一種數(shù)字磁羅盤全羅差自主優(yōu)化補(bǔ)償方法
發(fā)布時(shí)間:2018-09-16 19:00
【摘要】:為了進(jìn)一步提高數(shù)字磁羅盤全姿態(tài)羅差補(bǔ)償精度,提出了一種基于地磁場(chǎng)分量的羅差自主優(yōu)化補(bǔ)償方法。從羅差補(bǔ)償模型出發(fā),分析橢球擬合補(bǔ)償方法的局限性,在對(duì)參數(shù)缺失和剩余誤差分析的基礎(chǔ)上,建立了包含缺失參數(shù)的優(yōu)化補(bǔ)償模型;針對(duì)非線性優(yōu)化模型引入粒子群算法PSO(Particle Swarm Optimization)對(duì)模型參數(shù)進(jìn)行估計(jì),數(shù)值仿真結(jié)果證明了算法可有效估計(jì)缺失參數(shù)。實(shí)驗(yàn)結(jié)果表明,優(yōu)化補(bǔ)償過程無需借助外部輔助姿態(tài)信息,俯仰角-20°姿態(tài)下,優(yōu)化補(bǔ)償方法在橢球假設(shè)補(bǔ)償基礎(chǔ)上將其最大誤差由4.8°降至1.9°,誤差標(biāo)準(zhǔn)差由1.5°降至1.1°。
[Abstract]:In order to improve the precision of all-attitude offset compensation of digital magnetic compass, an autonomous compensation method based on geomagnetic field component is proposed. The limitation of ellipsoid fitting compensation method is analyzed based on the Luo difference compensation model. Based on the analysis of the missing parameters and residual errors, the optimal compensation model including missing parameters is established. The particle swarm optimization (PSO (Particle Swarm Optimization) algorithm is introduced to estimate the parameters of the nonlinear optimization model. The numerical simulation results show that the algorithm can effectively estimate the missing parameters. The experimental results show that the optimal compensation method reduces the maximum error from 4.8 擄to 1.9 擄and the error standard deviation from 1.5 擄to 1.1 擄on the basis of ellipsoid assumption.
【作者單位】: 南京理工大學(xué)機(jī)械工程學(xué)院;
【分類號(hào)】:TN965
,
本文編號(hào):2244474
[Abstract]:In order to improve the precision of all-attitude offset compensation of digital magnetic compass, an autonomous compensation method based on geomagnetic field component is proposed. The limitation of ellipsoid fitting compensation method is analyzed based on the Luo difference compensation model. Based on the analysis of the missing parameters and residual errors, the optimal compensation model including missing parameters is established. The particle swarm optimization (PSO (Particle Swarm Optimization) algorithm is introduced to estimate the parameters of the nonlinear optimization model. The numerical simulation results show that the algorithm can effectively estimate the missing parameters. The experimental results show that the optimal compensation method reduces the maximum error from 4.8 擄to 1.9 擄and the error standard deviation from 1.5 擄to 1.1 擄on the basis of ellipsoid assumption.
【作者單位】: 南京理工大學(xué)機(jī)械工程學(xué)院;
【分類號(hào)】:TN965
,
本文編號(hào):2244474
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2244474.html
最近更新
教材專著