基于移動(dòng)終端的聲紋識(shí)別系統(tǒng)關(guān)鍵算法研究
[Abstract]:Voiceprint recognition is a biometric authentication method, which extracts the characteristics that reflect the speaker's physiological and behavioral personality from the speaker's speech, and then combines the theory of pattern recognition to judge the speaker's identity. This paper mainly focuses on the related technology of voiceprint recognition system based on mobile terminal. In the aspect of speech endpoint detection, this paper presents an improved two-stage fusion endpoint detection method with energy-zero crossing rate. This method is different from the traditional energy-zero-crossing rate endpoint detection method, and it can separate energy detection from zero-crossing detection. The results of these two kinds of detection are carried out simultaneously without affecting each other, so that multithreaded parallel computing is realized. In addition, the improved energy-zero crossing rate endpoint detection method uses a single threshold, compared with the traditional algorithm, the improved algorithm can reduce the threshold parameter by half, and make the algorithm more simple. For mobile terminals with limited space resources, the improved algorithm is compared with the conventional single threshold energy detection method. It is found that the recognition rate of the voiceprint recognition system using the improved algorithm is higher than that of the conventional single threshold energy detection method. Therefore, the improved energy-zero-crossing two-stage fusion endpoint detection method has high application value in mobile terminal. Aiming at the problem that the traditional voice frame voting method can not highlight the difference of the result of each frame, a weighted voting method based on likelihood probability is proposed in this paper. According to the likelihood probability of different speech frames and probabilistic models, each frame is weighted by this method, which makes the speech frames with large likelihood probability have greater weight and higher confidence, thus enhancing the difference between the results of speech judgment in each frame. The result of speech frame fusion is more accurate. At the same time, through multiple weighted detection, this paper verifies that the voice-pattern recognition system based on weighted voting method is better than that based on traditional voting method. Finally, this paper designs a variety of feature extraction techniques and probability model combination scheme, through the actual recognition effect and algorithm complexity to analyze their feasibility on the mobile terminal, select the most feasible scheme. According to the optimal scheme of voiceprint recognition system, a voiceprint recognition system based on mobile terminal is designed, and the system is implemented on MATLAB platform. The system can realize voice pattern acquisition, model training, voiceprint recognition and registration. Voiceprint confirmation and other functions. At present, the system has been successfully transplanted to the Android system.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN912.34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 屈丹,王炳錫,魏鑫;基于GMM-UBM模型的語言辨識(shí)研究[J];信號(hào)處理;2003年01期
2 甄斌,吳璽宏,劉志敏,遲惠生;語音識(shí)別和說話人識(shí)別中各倒譜分量的相對(duì)重要性[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年03期
3 胡光銳,韋曉東;基于倒譜特征的帶噪語音端點(diǎn)檢測[J];電子學(xué)報(bào);2000年10期
4 趙雪芬 ,江肇蓮;頻譜分析儀的諧波測量技術(shù)[J];國外電子測量技術(shù);2001年02期
5 陳芬菲;;基于GMM的說話人識(shí)別系統(tǒng)[J];微處理機(jī);2006年04期
6 燕繼坤,鄭輝,王艷,曾立君;基于可信度的投票法[J];計(jì)算機(jī)學(xué)報(bào);2005年08期
7 王娜;鄭德忠;張淑清;;基于混沌振子的低信噪比語音端點(diǎn)檢測新方法[J];儀器儀表學(xué)報(bào);2009年07期
8 韓志艷;王旭;王健;;基于短時(shí)能零積和鑒別信息的語音端點(diǎn)檢測[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年12期
9 陳業(yè)仙;張歆奕;毛杰;;基于GMM-UBM的語言辨識(shí)算法研究[J];五邑大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
10 蔣曄;唐振民;;GMM文本無關(guān)的說話人識(shí)別系統(tǒng)研究[J];計(jì)算機(jī)工程與應(yīng)用;2010年11期
相關(guān)博士學(xué)位論文 前1條
1 張晶;聲紋識(shí)別魯棒性技術(shù)及應(yīng)用研究[D];廣東工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前6條
1 李煒鋒;基于Android的有身份識(shí)別功能的流媒體播放器的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
2 路娜;孤立詞語音識(shí)別系統(tǒng)的研究與設(shè)計(jì)[D];曲阜師范大學(xué);2014年
3 陳衛(wèi)強(qiáng);基于DSP的孤立詞語音識(shí)別系統(tǒng)的研究與實(shí)現(xiàn)[D];南昌航空大學(xué);2013年
4 張慧珊;基于聲紋識(shí)別和動(dòng)態(tài)密碼的雙因素身份認(rèn)證系統(tǒng)的研究與實(shí)現(xiàn)[D];武漢理工大學(xué);2013年
5 胡政權(quán);說話人識(shí)別中語音參數(shù)提取方法的研究[D];南京師范大學(xué);2013年
6 郝艷莉;基于DM6446的音頻信號(hào)識(shí)別系統(tǒng)的研究[D];哈爾濱理工大學(xué);2012年
,本文編號(hào):2173475
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2173475.html