低維相變薄膜顯示器件的光學性質研究
[Abstract]:The display technology based on phase change material has the advantages of high color contrast, high resolution, high speed and low power consumption. In this paper, the optical properties of the display devices based on phase change materials and the backlight prepared by the LED remote fluorescence technology based on the electrostatic spinning process are studied. The phase change material (GST) is applied to display devices, and the influence of the thickness of GST layer and its upper and lower layers on the optical properties of display devices is analyzed. The display device based on phase change material itself does not emit light, it needs backlight to illuminate. The ideal light source is a full spectrum light source. The light source prepared by LED remote fluorescence technology based on electrostatic spinning technology can produce uniform surface light source. When PET plastic sheet is used, the flexible sheet can be easily integrated with display panel. The optical calculation theory and method of phase change thin film display devices and the relationship between the reflectance or transmission spectra of two kinds of devices and the structure of the devices are studied. The main influencing factors of the display devices based on phase change material (GST) include the thickness of the GST layer and the thickness of the upper and lower layers of the GST layer. The reflectance spectra of the devices vary greatly with the thickness of the lower ITO. When the state of the GST changes, the color of the display changes. The thickness of the upper layer ITO does not affect the thickness of the wavelength corresponding to the maximum reflectivity when the thickness of the ITO is 11nm, the power consumption is the least and the device has the best color contrast, regardless of whether the GST is in the crystalline state or the amorphous state. For the transmissive devices, the transparency of the GST films decreases with the increase of the thickness of the layers. Therefore, the color contrast and transparency of the device should be taken into account in the design of the device structure, and the region of 7nm-15nm can be chosen as the compromise region. The preparation process and optical properties of fluorescent sheet by electrostatic spinning were studied. The following conclusions are drawn: the concentration of PVA solution is 9, the applied voltage is 25 kV, and the distance from the spinneret to the glass slide is 9 cm, which is the three optimal parameters of the electrostatic spinning process, and the spinning effect is the most obvious. Yellow and red fluorescent sheets were prepared based on electrostatic spinning process and their optical properties were tested and analyzed. The transmittance of yellow fluorescent film was measured by spectrophotometer. The PL spectra of the yellow fluorescent chips measured by the fluorescence spectrum measurement system show that the peak value of the spectrum does not change with the spinning time. Therefore, electrospinning can be prepared. The desired effect and optical properties are achieved with different filament time. The optical performance parameters of the lamp were measured by using a fast spectral radiometer: luminous flux, correlation color temperature, and light efficiency. The longer the electrostatic spinning time, the lower the luminous flux and the lower the light efficiency. The wide range of color temperature can be adjusted at the same time of keeping high luminous efficiency with different phosphor content. Therefore, we can use the red fluorescent chip to adjust the luminous spectral composition and improve the lighting quality. The luminescence spectrum can be freely set by changing the kind of fluorescence chip. The light source prepared by LED remote fluorescence technology based on electrostatic spinning process has the following characteristics: the spectral composition is easy to adjust, the structure is flexible, thin layer, flexible, so it is suitable as backlight source.
【學位授予單位】:天津工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN873
【相似文獻】
相關期刊論文 前10條
1 童林夙;新世紀顯示器件[J];現代顯示;2002年01期
2 苑國良;;淺談電子顯示器件[J];中國電子商情;2003年Z1期
3 童林夙;世紀之交的顯示器件[J];世界產品與技術;2003年07期
4 山內一典;;色彩是真實的源泉 關注顯示器件的發(fā)展[J];電子設計應用;2006年09期
5 翁瑞琪;;顯示器件概述[J];儀器制造;1978年03期
6 彭國賢;;顯示器件現狀[J];電子管技術;1980年05期
7 毛國才;;國際會議將探討顯示器件[J];光電子學技術;1985年03期
8 毛國才;;電子顯示器件前景燦爛[J];光電子學技術;1985年04期
9 徐保度;;電子顯示器件的進展[J];電子技術;1987年03期
10 李良駿;;顯示器件的發(fā)展動向[J];黑龍江商學院學報(自然科學版);1987年09期
相關會議論文 前7條
1 龍滬強;;數字信息時代的顯示器件[A];上海市真空學會成立20周年暨第九屆學術年會論文集[C];2005年
2 童林夙;;真空顯示器件的現況與展望[A];第四屆華東真空科技學術交流展示會學術論文集[C];2003年
3 薛唯;;薄膜電致發(fā)光顯示器件的研究[A];全面建設小康社會:中國科技工作者的歷史責任——中國科協2003年學術年會論文集(上)[C];2003年
4 許寧生;;納米冷陰極發(fā)光和顯示器件的研制[A];中國光學學會2006年學術大會論文摘要集[C];2006年
5 陳國平;;顯示器件屏面使用的抗靜電減反(ARAS)膜[A];江蘇省真空學會第十屆學術交流會論文集[C];2002年
6 黃尚廉;;從基于MEMS微顯示器件發(fā)展談科技創(chuàng)新與產業(yè)化[A];中國儀器儀表學會2006年學術年會會議指南[C];2006年
7 辛化梅;杜秉初;;CRT分辨率及會聚測量技術分析[A];中國電子學會真空電子學分會第十屆年會論文集(下冊)[C];1995年
相關重要報紙文章 前10條
1 記者 尤志卉;日立顯示器件預計銷售額80億[N];蘇州日報;2010年
2 朱錦林;顯示器件領域專利態(tài)勢與發(fā)展趨勢分析及對策[N];計算機世界;2000年
3 記者王劉芳;北京工業(yè)大步走出去[N];北京日報;2002年
4 劉培政;各種新型顯示技術爭奪市場[N];中國電子報;2006年
5 信息產業(yè)部電子信息產品管理司 季國平;加快技術發(fā)展 擴大應用領域[N];中國電子報;2000年
6 彩虹集團公司高級技術顧問吳祖塏 $$ 彩虹集團公司技術中心李勇軍 $$ 彩虹集團公司技術質量部段誠;平面顯示要抓 CRT還須加強[N];中國電子報;2003年
7 馮永鋒;可“卷”起來的顯示器件亮相[N];中國高新技術產業(yè)導報;2004年
8 記者 李秋怡;四川構建世界最先進顯示器件產業(yè)集群[N];四川日報;2012年
9 林秋培;京東方顯現強者姿態(tài)[N];中國企業(yè)報;2003年
10 屈曉聲;新型顯示器件進展[N];中國計算機報;2002年
相關碩士學位論文 前6條
1 涂強;環(huán)境照明可調的亮室對比度測量儀設計[D];東南大學;2016年
2 薛衛(wèi)芳;低維相變薄膜顯示器件的光學性質研究[D];天津工業(yè)大學;2017年
3 金霞;LED微顯示器件的設計和隔離溝槽的制作研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2006年
4 徐高文;彩虹集團顯示器件產品發(fā)展戰(zhàn)略研究[D];西北大學;2004年
5 蔡磊;基于微顯示器件的3D雙目成像方法及FPGA實現[D];電子科技大學;2012年
6 劉輝;OLED驅動控制電路的研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2005年
,本文編號:2152019
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2152019.html