基于北斗的低成本無人機(jī)傾斜攝影系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
本文選題:低成本無人機(jī) + 北斗定位 ; 參考:《上海海洋大學(xué)》2017年碩士論文
【摘要】:低成本、微小型無人機(jī)由于其可定制度高,容易實(shí)現(xiàn)拆卸折疊運(yùn)輸、容易實(shí)現(xiàn)彈射起飛加傘降或垂直起降,不依賴機(jī)場(chǎng)跑道或受場(chǎng)地局限等特點(diǎn),越來越多地應(yīng)用于市政規(guī)劃、農(nóng)業(yè)用地測(cè)量等需要即時(shí)獲取地圖及地理信息的工作中。傳統(tǒng)的航空攝影遙感通過垂直安裝在機(jī)身上的相機(jī),進(jìn)行拍攝,攝影過程中相機(jī)拍攝的圖像基本控制在與地面垂直,該拍攝模式獲取的影像進(jìn)行幾何糾正可以獲取較高的幾何定位,從而能夠生成高精度的正攝影像。但與此同時(shí),在對(duì)地物進(jìn)行三維重建時(shí),正射影像圖僅拍攝到了地物的頂面紋理信息,然而側(cè)面由于缺乏側(cè)面的紋理信息,難以建立完整的地物三維地表模型,特別是由于部分遮擋影響生成的三模模型存在空洞。無人機(jī)傾斜攝影是一種通過在同一無人機(jī)平臺(tái)搭載兩個(gè)或多個(gè)不同傾角組合的攝影平臺(tái),可以同時(shí)獲取地物的頂部紋理和側(cè)邊紋理信息,通過嚴(yán)格的多視幾何關(guān)系以及立體匹配算法,可以自動(dòng)重建地物的三維地表模型,降低三維重建的外業(yè)工作量,提升作業(yè)速度,并且能在較大范圍區(qū)域推廣使用。但是低成本無人機(jī)由于自身運(yùn)載能力、電池容量、結(jié)構(gòu)強(qiáng)度等條件的限制,在進(jìn)行傾斜攝影時(shí)需要進(jìn)行取舍。問題主要?dú)w納為:首先是GNSS定位精度方面,無人機(jī)上搭載的GNSS設(shè)備在一定間隔時(shí)間生成的POS數(shù)據(jù)包含了無人機(jī)的三維坐標(biāo)和姿態(tài)數(shù)據(jù),該數(shù)據(jù)對(duì)地物三維重建的精度具有重要的影響,但在復(fù)雜環(huán)境如山區(qū)中,無人機(jī)航拍作業(yè)的飛行高度上會(huì)有信號(hào)遮擋,單一 GNSS定位精度不足。因此,單一的GNSS信號(hào)源難以滿足無人機(jī)傾斜攝影在復(fù)雜環(huán)境下的適用性,通過組合北斗、GPS等不同GNSS定位信號(hào),可以提升無人機(jī)傾斜攝影的導(dǎo)航定位精度,并且更好的進(jìn)行航線規(guī)劃。其次,傾斜攝影產(chǎn)生大量的影像,如何進(jìn)行快速準(zhǔn)確的地物三維重建需要構(gòu)建無地面控制條件下基于POS數(shù)據(jù)的無人機(jī)傾斜攝影的密集匹配方法。最后是無人機(jī)續(xù)航能力方面,由于低成本無人機(jī)載重有限,在需要搭載成像載荷的條件下難以搭載很大的電池,因此其續(xù)航能力往往難以滿足無人機(jī)傾斜攝影需要的長航時(shí)需求。針對(duì)上述問題,本文設(shè)計(jì)并實(shí)現(xiàn)了了一種基于低成本材料、續(xù)航能力較強(qiáng)、三維重建精度較高的無人機(jī)傾斜攝影系統(tǒng)。主要工作如下:1)研究了無人機(jī)姿態(tài)穩(wěn)定性問題,提出利用擴(kuò)展卡爾曼濾波(EKF)方法對(duì)兩組IMU單元和兩組地磁傳感獲取的慣性數(shù)據(jù)進(jìn)行降噪并融合處理,通過航姿航向解算,提升了無人機(jī)的穩(wěn)定性,獲取了高精度的姿態(tài)數(shù)據(jù),為后續(xù)的定位精度提高提供了保障。2)研究了無人機(jī)在線北斗/GPS組合導(dǎo)航技術(shù),該方法通過優(yōu)選北斗與GPS的可視衛(wèi)星來實(shí)現(xiàn)組合定位,該方法在信號(hào)不佳的情況下也能達(dá)到較高的定位精度。3)研究了基于無人機(jī)傾斜攝影的地物三維重建技術(shù),該方法首先通過SIFT特征提取方法生成大量特征點(diǎn),在此基礎(chǔ)上通過KD-TREE匹配方法對(duì)立體相對(duì)進(jìn)行匹配從而自動(dòng)建立相對(duì)的連接點(diǎn),自動(dòng)獲取傾斜影像的連接點(diǎn),利用多視幾何關(guān)系重建相機(jī)內(nèi)方位元素和外方參數(shù)。然后利用散列圖像聚簇CMVS (cluster multi-view stereo)對(duì)序列圖像組進(jìn)行聚簇,以減少重建過程的數(shù)據(jù)量,提高運(yùn)算速度,最后通過基于貼片模型的密集匹配PMVS (patch-based multi-view stereo)通過匹配、膨脹、過濾三個(gè)主要步驟完成最終的密集匹配。4)設(shè)計(jì)以及開發(fā)了一款低成本固定翼無人機(jī),機(jī)身以泡沫為基底材料輔以碳纖維桿加強(qiáng),動(dòng)力采用電機(jī)驅(qū)動(dòng)的單個(gè)螺旋槳。搭載了一個(gè)雙相機(jī)的傾斜攝影的載荷,以及用于控制曝光同步的單片機(jī)控制器。利用固定翼機(jī)型較高的飛行效率以獲取更長航時(shí)。5)通過兩次試飛調(diào)整飛控參數(shù)與機(jī)身重心,提升了無人機(jī)的穩(wěn)定性和續(xù)航能力。整機(jī)成本控制在一萬以內(nèi),地面站部分的其它器材成本在五千以內(nèi);根據(jù)試驗(yàn)航程時(shí)間及試驗(yàn)后電池剩余電量的估算,機(jī)體作業(yè)飛行時(shí)間約1小時(shí)30分鐘,作業(yè)航程約70公里。達(dá)到了預(yù)期的設(shè)計(jì)目標(biāo)。本研究開發(fā)的無人機(jī)傾斜攝影系統(tǒng),可以在較大范圍內(nèi)實(shí)現(xiàn)對(duì)地物進(jìn)行傾斜攝影,并利用該攝影結(jié)果進(jìn)行三維重建,可以推廣應(yīng)用在土木建設(shè)監(jiān)管、市政規(guī)劃、農(nóng)業(yè)用地測(cè)量等需要即時(shí)獲取地圖及地理信息同時(shí)可以接受一定的建模、建圖誤差的地理信息相關(guān)工作中。
[Abstract]:Low cost, miniaturized UAV is easy to realize disassembly and folding transportation because of its high fixed system. It is easy to realize ejection takeoff plus parachute drop or vertical landing, and is not dependent on airport runway or site limitation. It is more and more applied to municipal planning, agricultural land measurement and so on. It is necessary to get maps and geographic information in time. Aerial photographic remote sensing is photographed by a camera mounted vertically on the fuselage. The image captured by the camera is basically controlled perpendicular to the ground during the process of photography. The image obtained by the shooting mode can be corrected by geometric correction to obtain high geometric positioning, thus generating a positive image of high degree of precision, but at the same time, the object is in the ground. In 3D reconstruction, the Orthophoto Image only takes the top surface texture information of the ground objects. However, the side due to the lack of side texture information, it is difficult to establish a complete 3D surface model of ground objects, especially the three model model, which is generated by the partial occlusion, is empty. The top texture and side texture information of the ground objects can be obtained at the same time with two or more different dip angles. The 3D surface model of the ground objects can be reconstructed automatically by the strict multi view geometric relationship and the stereo matching algorithm, which can reduce the work volume of the 3D reconstruction, improve the operation speed, and can be in a large scope. But low cost UAV, due to its own carrying capacity, battery capacity, structural strength and other conditions, needs to be taken out during the tilt photography. The main problem is: first, the GNSS positioning accuracy, the POS data generated by the GNSS equipment on the UAV at a certain interval contains the UAV. The 3D coordinate and attitude data have important influence on the accuracy of the 3D reconstruction of the ground objects, but in the complex environment such as the mountain area, the flight height of the UAV aerial aerial work will have signal occlusion and the single GNSS positioning accuracy is insufficient. Therefore, the single GNSS signal source is difficult to meet the suitability of the unmanned aerial vehicle in the complex environment. By combining the different GNSS positioning signals such as the dipper and GPS, the navigation positioning accuracy of the unmanned aerial vehicle can be improved and the route planning is better. Secondly, the tilt photography produces a large number of images, and how to make rapid and accurate 3D reconstruction of the ground needs to build the unmanned aerial vehicle (UAV) based on the POS data under the condition of no ground control. In the end, the compact matching method of photography. Finally, because of the limited load of the low cost unmanned aerial vehicle (UAV), it is difficult to carry large batteries under the condition of carrying the imaging load, so the endurance of the unmanned aerial vehicle is often difficult to meet the long flight needs of the unmanned aerial vehicle (UAV). An unmanned aerial vehicle (UAV) tilt camera system based on low cost material, strong endurance and high precision of 3D reconstruction. The main work is as follows: 1) the attitude stability of unmanned aerial vehicle (UAV) is studied. The extended Calman filter (EKF) method is used to denoise and fuse the inertial data obtained from two groups of IMU units and two groups of geomagnetic sensing. Through the flight direction solution, the stability of the UAV is improved, the high precision attitude data is obtained, and the following positioning precision is guaranteed by.2). The integrated navigation technology of the unmanned aerial vehicle (UAV) online Beidou /GPS is studied. The method is based on the optimal selection of the visible satellite of the Beidou and GPS, and the method is under the condition of poor signal. It can also achieve high positioning accuracy.3). The 3D reconstruction technology based on unmanned aerial vehicle (UAV) tilt photography is studied. First, a large number of feature points are generated by the SIFT feature extraction method. On this basis, the stereo relative is matched by the KD-TREE matching method and the relative connection points are built automatically, and the inclined image is automatically obtained. In order to reduce the amount of data in the reconstruction process and improve the computing speed, a dense matching PMVS (patch-based multi-view stere) based on the patch model (patch-based multi-view stere) is used to reconstruct the azimuth and external parameters of the camera by using the multi view geometric relationship. Then the sequence image group is clustered with the hash image clustering CMVS (cluster multi-view stereo). O) a low cost fixed wing UAV is designed and developed by matching, expanding, filtering three main steps to complete the final dense matching.4). The fuselage is reinforced with a carbon fiber rod with foam as the base material and a single propeller driven by the motor. The load of a two camera tilt camera is carried and the aeration is used to control the aeration. Optical synchronous microcontroller controller. Using the higher flight efficiency of the fixed wing to obtain longer flight time.5), the flight control parameters and the body center of gravity are adjusted by two flight tests. The stability and endurance of the UAV are improved. The cost control of the whole machine is within ten thousand, the cost of other equipment in the ground station is less than five thousand. The time and the residual quantity of the battery after the test are estimated. The flight time of the body is about 1 hours and 30 minutes, and the operating range is about 70 kilometers. The designed target is achieved. The tilt photography system of the unmanned aerial vehicle (UAV) developed in this study can carry out the tilt photography in a large range and make use of the photographic results for three-dimensional reconstruction. The promotion and application in civil construction supervision, municipal planning, agricultural land use measurement and so on need immediate access to maps and geographic information at the same time to accept certain modeling, and to build mapping errors in the geographical information related work.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P231;TN967.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王健;辛向龍;張修飛;;基于i.MX6無人機(jī)視頻碼率受控的壓縮系統(tǒng)設(shè)計(jì)[J];火力與指揮控制;2016年11期
2 譚金石;黃正忠;;基于傾斜攝影測(cè)量技術(shù)的實(shí)景三維建模及精度評(píng)估[J];現(xiàn)代測(cè)繪;2015年05期
3 張平;王山東;黃瑾娉;周明明;;基于SFM和CMVS/PMVS的建筑物點(diǎn)云重構(gòu)方法研究[J];蘇州科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2015年03期
4 曲林;馮洋;支玲美;高文慧;;基于無人機(jī)傾斜攝影數(shù)據(jù)的實(shí)景三維建模研究[J];測(cè)繪與空間地理信息;2015年03期
5 李衛(wèi)正;申世廣;何鵬;郝德君;方彥;陶瓏;張水鋒;;低成本小型無人機(jī)遙感定位病死木方法[J];林業(yè)科技開發(fā);2014年06期
6 習(xí)業(yè)勛;鄧聯(lián)文;張紀(jì)陽;張代兵;;基于多核架構(gòu)無人機(jī)飛行控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];電子測(cè)量技術(shù);2014年10期
7 李安福;曾政祥;吳曉明;;淺析國內(nèi)傾斜攝影技術(shù)的發(fā)展[J];測(cè)繪與空間地理信息;2014年09期
8 洪達(dá);周磊;鄭震山;;國外小型艦載固定翼無人機(jī)裝備回收技術(shù)發(fā)展研究[J];飛航導(dǎo)彈;2014年04期
9 王建強(qiáng);鐘春惺;江麗鈞;譚金石;鈄祖民;;基于多視航空影像的城市三維建模方法[J];測(cè)繪科學(xué);2014年03期
10 王超磊;王田苗;梁建宏;張以成;周易;;小型無人直升機(jī)單目視覺FastSLAM研究[J];高技術(shù)通訊;2013年10期
相關(guān)博士學(xué)位論文 前6條
1 楊永明;無人機(jī)遙感系統(tǒng)數(shù)據(jù)獲取與處理關(guān)鍵技術(shù)研究[D];昆明理工大學(xué);2016年
2 孫罡;低成本微小型無人機(jī)慣性組合導(dǎo)航技術(shù)研究[D];南京理工大學(xué);2014年
3 郭劍東;無人傾轉(zhuǎn)旋翼機(jī)飛行控制研究[D];南京航空航天大學(xué);2013年
4 李立春;基于無人機(jī)序列成像的地形重建及其在導(dǎo)航中的應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2009年
5 樊瓊劍;多無人機(jī)協(xié)同編隊(duì)仿生飛行控制關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2008年
6 吳建德;基于頻域辨識(shí)的微小型無人直升機(jī)的建模與控制研究[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 樊瓏;多旋翼無人機(jī)視覺引導(dǎo)降落研究[D];哈爾濱工業(yè)大學(xué);2016年
2 劉洋;無人機(jī)傾斜攝影測(cè)量影像處理與三維建模的研究[D];東華理工大學(xué);2016年
3 李凌霄;多旋翼無人機(jī)單鏡頭傾斜影像采集關(guān)鍵技術(shù)研究[D];長江科學(xué)院;2016年
4 周興霞;應(yīng)急測(cè)繪固定翼無人機(jī)傾斜航攝系統(tǒng)集成研究[D];西南交通大學(xué);2016年
5 史興隆;基于Pixhawk飛控板的固定翼模型飛機(jī)控制技術(shù)研究[D];北方工業(yè)大學(xué);2016年
6 薛遠(yuǎn)奎;小型旋翼無人機(jī)姿態(tài)融合及導(dǎo)航方法[D];電子科技大學(xué);2016年
7 歐超杰;多無人機(jī)編隊(duì)控制技術(shù)研究[D];南京航空航天大學(xué);2015年
8 李卉;無人機(jī)傾斜攝影測(cè)量應(yīng)用于建筑物三維建模研究[D];遼寧工程技術(shù)大學(xué);2015年
9 樊江川;無人機(jī)航空攝影測(cè)樹技術(shù)研究[D];北京林業(yè)大學(xué);2014年
10 何亞男;微型多撲翼飛行器的流體分析與樣機(jī)研制[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號(hào):2069356
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2069356.html