有源光纜中光路耦合系統(tǒng)的設(shè)計
發(fā)布時間:2018-06-22 14:03
本文選題:有源光纜 + 模式耦合; 參考:《南京郵電大學》2017年碩士論文
【摘要】:隨著互聯(lián)網(wǎng)+時代數(shù)據(jù)的快速交換,有源光纜(AOC)集成了多模光纖光纜、光收發(fā)模組和控制芯片等,具有傳輸容量大、能耗低等優(yōu)勢,是數(shù)據(jù)中心、高性能計算機群等領(lǐng)域理想的光互連線纜。本文研究芯片托盤型垂直腔面發(fā)射激光器(VCSEL)與多模光纖(MMF)的耦合問題,首先在模式耦合理論基礎(chǔ)上,采用重疊積分法,構(gòu)造了計算VCSEL橫模與MMF模場的能量耦合效率數(shù)學模型。利用數(shù)值軟件MATLAB計算了:(1)當VCSEL與MMF直接對準耦合時,計算通信級VCSEL輻射的低四階橫模與MMF模場的能量耦合效率;(2)當VCSEL中心與MMF軸心間發(fā)生縱、橫向位移時,計算分析了01橫模與MMF的01、02、11模場能量耦合效率,計算結(jié)果表明,當VCSEL與MMF兩軸心橫向偏移7.5μm時,兩者的耦合效率為50%,當VCSEL與MMF間軸向位移從0mm增大到1mm處,兩者的耦合效率下降到8%?紤]芯片托盤型VCSEL與MMF之間存在一定位移,為了提高兩者的耦合效率,利用光學軟件ZEMAX優(yōu)化設(shè)計了曲率半徑為2.549mm,中心厚度為2mm的非球面透鏡耦合系統(tǒng),并在光學分析軟件TRACEPRO中仿真從光源到光纖的實際耦合光路,仿真結(jié)果表明,當VCSEL出射端面與MMF入射端面分別位于兩透鏡的焦點處時,耦合效率為86%,同時,VCSEL芯片中心相對MMF入射端面的軸心橫向偏移10μm時,VCSEL與MMF的耦合效率下降到56%。根據(jù)TP中的仿真系統(tǒng),搭建實際傳輸光路系統(tǒng),并對系統(tǒng)進行相關(guān)數(shù)據(jù)測量,(1)VCSEL與MMF之間未加耦合透鏡系統(tǒng),兩者的中心相對橫向偏移從0μm到20μm時,耦合效率從4.7%下降到0.12%;(2)VCSEL與MMF之間加耦合透鏡系統(tǒng),兩者的中心相對橫向偏移從0μm到20μm時,耦合效率從84%下降到25%,當耦合對準時,設(shè)計的透鏡耦合系統(tǒng)使兩者的耦合效率提高79%。由于光學元件對光束的吸收、散射及端面反射等因素影響,實驗數(shù)據(jù)略小于理論計算,實驗結(jié)果表明,芯片焊接過程中,應(yīng)盡量避免VCSEL芯片的橫向偏移,控制誤差在?3μm內(nèi)。
[Abstract]:With the rapid exchange of data in the Internet era, active Optical Cable (AOC) integrates multi-mode optical fiber optic cables, optical transceiver modules and control chips. It has the advantages of large transmission capacity, low energy consumption, and is the data center. High performance computer cluster and other fields ideal optical interconnection cable. In this paper, the coupling problem between chip tray type vertical cavity surface emitting laser (VCSEL) and multimode fiber (MMF) is studied. Firstly, based on the mode coupling theory, a mathematical model for calculating the energy coupling efficiency of VCSEL transverse mode and MMF mode field is constructed by using overlapping integration method. The results are as follows: (1) when the VCSEL and MMF are aligned directly, the energy coupling efficiency of the low fourth order transverse mode and the MMF mode field of the VCSEL radiation is calculated, and (2) when the longitudinal and transverse displacement occurs between the VCSEL center and the MMF axis, the energy coupling efficiency of the low fourth order transverse mode and the MMF mode field of the communication level VCSEL radiation is calculated when the VCSEL center is aligned directly with the MMF. The field energy coupling efficiency of 01 transverse mode and MMF is calculated and analyzed. The calculated results show that the coupling efficiency is 50 when the transverse shift between VCSEL and MMF is 7.5 渭 m, and when the axial displacement between VCSEL and MMF increases from 0mm to 1mm. The coupling efficiency of the two decreases to 8%. Considering the displacement between chip tray type VCSEL and MMF, in order to improve the coupling efficiency, an aspheric lens coupling system with curvature radius of 2.549 mm and center thickness of 2mm is designed by using optical software ZEMAX. The optical analysis software TRACEPRO is used to simulate the actual coupling optical path from the light source to the fiber. The simulation results show that the VCSEL exit end and the MMF incident end are located at the focal point of the two lenses, respectively. The coupling efficiency is 86 and the coupling efficiency of VCSEL and MMF decreases to 56m when the center of VCSEL chip is shifted 10 渭 m from the axial center of the incident end of MMF. According to the simulation system in TP, the actual transmission optical path system is built, and the relevant data are measured. (1) the uncoupled lens system between VCSEL and MMF, when the center of the two systems is relatively lateral offset from 0 渭 m to 20 渭 m, The coupling efficiency decreases from 4.7% to 0.12. (2) when the center relative lateral deviation of VCSEL and MMF increases from 0 渭 m to 20 渭 m, the coupling efficiency decreases from 84% to 25 parts. Due to the influence of optical elements on beam absorption, scattering and end reflection, the experimental data are slightly smaller than theoretical calculation. The experimental results show that the transverse migration of VCSEL chip should be avoided and the control error is within 3 渭 m during chip welding.
【學位授予單位】:南京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN818
【參考文獻】
相關(guān)期刊論文 前5條
1 關(guān)寶璐;劉欣;江孝偉;劉儲;徐晨;;多橫模垂直腔面發(fā)射激光器及其波長特性[J];物理學報;2015年16期
2 ;AOC:新一代數(shù)據(jù)中心高速光互連產(chǎn)品[J];通訊世界;2013年14期
3 任彥;俞重遠;鄭世奇;程俊強;;垂直腔面發(fā)射激光器的橫模競爭特性[J];北京郵電大學學報;2007年01期
4 于海鷹,徐建高,鄒德恕,沈光地;GRIN光纖傳輸特性及其在透鏡光纖耦合系統(tǒng)中的應(yīng)用研究[J];半導體技術(shù);2005年09期
5 曹光亞,楊春;垂直腔面發(fā)射激光器與多模光纖的直接耦合[J];電子器件;2005年01期
相關(guān)碩士學位論文 前4條
1 彭雙;四通道小型可插拔多模有源光纜的開發(fā)和生產(chǎn)[D];上海交通大學;2015年
2 萬仁;120Gb/s CXP光收發(fā)模塊的研究[D];武漢郵電科學研究院;2014年
3 白春;高速率有源光纜的設(shè)計與實現(xiàn)[D];上海交通大學;2011年
4 夏志超;多模光纖短距離高速通信技術(shù)研究[D];東南大學;2004年
,本文編號:2053064
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2053064.html
最近更新
教材專著