移動(dòng)自組織網(wǎng)絡(luò)中基于智能混合擴(kuò)頻的高效媒體訪問(wèn)控制方法
發(fā)布時(shí)間:2018-06-22 01:31
本文選題:移動(dòng)自組織網(wǎng)絡(luò) + 智能混合擴(kuò)頻; 參考:《計(jì)算機(jī)應(yīng)用研究》2017年07期
【摘要】:針對(duì)現(xiàn)存的大多數(shù)媒體訪問(wèn)控制(MAC)方法中斷概率較高、擴(kuò)頻增益的傳輸容量不佳等問(wèn)題,在自組織網(wǎng)絡(luò)中,提出一種基于智能混合擴(kuò)頻(SMSS)的MAC方法,其目的是利用穩(wěn)健的調(diào)頻擴(kuò)頻(DSSS)物理層降低遠(yuǎn)場(chǎng)干擾,運(yùn)用智能慢跳頻管理近場(chǎng)干擾。在低中斷概率約束情況下,SMSS確保了在活躍接收器處的最小信號(hào)與干擾加噪聲比(SINR)的閾值。SMSS不抑制空間中的任何節(jié)點(diǎn),也不及時(shí)將它們釋放出來(lái)。在跳頻區(qū)大小可變的情況下,推導(dǎo)出傳輸容量下限的數(shù)學(xué)模型。實(shí)驗(yàn)結(jié)果表明,提出的SMSS MAC方法在傳輸容量方面具有較大優(yōu)勢(shì),超過(guò)了ALOHA和基于保護(hù)區(qū)的擴(kuò)頻MAC協(xié)議。對(duì)于較小的擴(kuò)頻增益,其優(yōu)勢(shì)更為明顯。
[Abstract]:In order to solve the problems of high outage probability and poor transmission capacity of spread spectrum gain in most existing media access control (MAC) methods, a MAC method based on intelligent hybrid spread spectrum (SMSS) is proposed in ad hoc networks. The aim is to reduce far-field interference by using robust frequency-modulated spread spectrum (DSSS) physical layer and to use intelligent slow-hopping frequency to manage near-field interference. In the case of low interruption probability constraint, SMSS ensures that the minimum signal-to-interference noise ratio (SINR) threshold at active receivers does not suppress any nodes in space, nor does it release them in time. The mathematical model of the lower limit of transmission capacity is derived under the condition of variable frequency hopping region. The experimental results show that the proposed SMSS MAC method is superior to Aloha and the spread spectrum MAC protocol based on protected areas in terms of transmission capacity. For small spread spectrum gain, its advantage is more obvious.
【作者單位】: 漢江師范學(xué)院計(jì)算機(jī)科學(xué)系;武漢大學(xué)軟件學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61272112) 湖北省教育科學(xué)“十二五”規(guī)劃資助項(xiàng)目(2012B454)
【分類(lèi)號(hào)】:TN929.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡y,
本文編號(hào):2050938
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2050938.html
最近更新
教材專著