天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

基于可穿戴社交感知系統(tǒng)的語音分割算法研究

發(fā)布時(shí)間:2018-06-18 03:20

  本文選題:HMM算法 + HMM-KLD算法 ; 參考:《電子科技大學(xué)》2017年碩士論文


【摘要】:隨著科技的進(jìn)步和人們生活水平的提高,身心健康成為當(dāng)今社會(huì)的關(guān)注問題。通常,研究者可以通過社交感知特征客觀分析和評估身心健康狀態(tài)。語音信號處理是該領(lǐng)域重要的研究方向。它可以通過提取分析和融合語音特征客觀地綜合評估社交人群的心理健康。因此,高效的語音分割算法將有利于社交語音感知特征的提取。本文將針對傳統(tǒng)非監(jiān)督語音分割算法中基于HMM(Hidden Markov Model)分割精度的局限,提出了融合KL散度(kullback-leibler divergence)的HMM語音分割算法,進(jìn)一步提高語音分割準(zhǔn)確性。但是,從HMM-KLD的語音分割結(jié)果中,存在分割算法最優(yōu)判定問題。對于該難點(diǎn),本文提出了基于稀疏性相關(guān)特征的自動(dòng)判別語音分割方法,有效地解決這一難題。本文將從以下幾個(gè)方面進(jìn)行具體闡述。(1)基于可穿戴社交感知系統(tǒng)和語音分割系統(tǒng)的國內(nèi)外研究現(xiàn)狀,本文提出了了高效的語音分割算法可以較好地幫助社交感知系統(tǒng)進(jìn)行語音特征分析并有利于研究在實(shí)際應(yīng)用中社交感知行為或心理狀態(tài)與語音特征的關(guān)聯(lián)。(2)基于傳統(tǒng)的HMM非監(jiān)督語音分割方法,評估在不同噪音場景下的語音分割準(zhǔn)確性。這一過程主要分為三個(gè)階段,第一階段是基于譜熵和短時(shí)自相關(guān)特征進(jìn)行去噪;第二階段基于短時(shí)能量去除無聲音的信號部分;第三階段主要是基于不同穿戴社交感知設(shè)備的人的短時(shí)能量的不同,分割出穿戴者語音信號。(3)由于HMM算法分割精度的局限性,本文提出了融合KL散(kullback-leibler divergence)的HMM語音分割算法可以進(jìn)一步提高語音分割準(zhǔn)確性,并通過所采集的語音信號驗(yàn)證新算法的改進(jìn)效果。(4)根據(jù)HMM-KLD的語音分割算法中存下的最優(yōu)判定問題,基于語音稀疏性相關(guān)特征,本文提出了一種可以自動(dòng)優(yōu)化判別語音分割算法的策略,進(jìn)一步提高語音分割算法的準(zhǔn)確性。(5)基于基本語音特征和韻律語音特征,本文探索分析說話人之間親密度以及老年群體的社交特征與他們的語音感知特征的聯(lián)系。(6)總結(jié)全文和展望未來,主要總結(jié)本文中的語音分割算法的優(yōu)劣性和后期可改進(jìn)的一些方案,同時(shí)展望將來語音分割算法以及語音特征分析在可穿戴社交感知系統(tǒng)中的應(yīng)用。
[Abstract]:With the progress of science and technology and the improvement of people's living standards, physical and mental health has become a social concern. Usually, researchers can objectively analyze and evaluate the state of physical and mental health through the characteristics of social perception. Speech signal processing is an important research direction in this field. It can objectively and synthetically evaluate the mental health of social groups by extracting and analyzing and integrating speech features. Therefore, efficient speech segmentation algorithm will be conducive to feature extraction of social speech perception. In this paper, aiming at the limitation of traditional unsupervised speech segmentation algorithm based on hmm Hidden Markov Model, a hmm speech segmentation algorithm based on KL divergence and Kullback-leibler divergence is proposed to further improve the accuracy of speech segmentation. However, from the HMM-KLD speech segmentation results, there is an optimal decision problem of segmentation algorithm. For this difficulty, an automatic discriminant speech segmentation method based on sparse correlation features is proposed to solve this problem effectively. In this paper, the following aspects of the specific elaboration of the following aspects of the wearable social perception system and speech segmentation system based on the domestic and foreign research status, In this paper, an efficient speech segmentation algorithm is proposed, which can be used to analyze speech features in social perception systems and to study the relationship between social perception behavior or mental state and speech features in practical applications. Traditional hmm unsupervised speech segmentation method, To evaluate the accuracy of speech segmentation in different noise scenes. This process is mainly divided into three stages: the first stage is based on spectral entropy and short-time autocorrelation, the second stage is based on short-term energy to remove the soundless signal. The third stage is mainly based on the difference of short-term energy of people wearing different social perception devices, and the speech signal of the wearer is segmented. (3) because of the limitation of the segmentation accuracy of hmm algorithm, In this paper, we propose a speech segmentation algorithm based on KL scattered Kullback-leibler divergence (hmm), which can further improve the accuracy of speech segmentation. The improved effect of the new algorithm is verified by the collected speech signals. (4) according to the optimal decision problem in HMM-KLD 's speech segmentation algorithm, Based on the features of speech sparsity, this paper proposes a strategy to automatically optimize speech segmentation algorithm, which can further improve the accuracy of speech segmentation algorithm. It is based on basic speech features and prosodic speech features. This paper explores the relationship between the speaker's affinity and the social characteristics of the elderly and their phonological perception. (6) summing up the full text and looking forward to the future. This paper mainly summarizes the advantages and disadvantages of the speech segmentation algorithm in this paper and some schemes that can be improved in the later stage. At the same time, it looks forward to the application of speech segmentation algorithm and speech feature analysis in wearable social perception system in the future.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN912.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張芝旖;姚恩濤;石玉;;小波分析和MFCC融合的聲音信號端點(diǎn)檢測算法[J];電子測量技術(shù);2016年07期

2 張錚;王可欣;陳爽;周明潔;;外向性對感知到的朋友支持的影響——社交網(wǎng)站使用時(shí)間的調(diào)節(jié)作用[J];全球傳媒學(xué)刊;2016年01期

3 單燕燕;;基于LPC和MFCC得分融合的說話人辨認(rèn)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2016年01期

4 王平;秦威;;基于藍(lán)牙無線傳感網(wǎng)絡(luò)的病人身體狀態(tài)實(shí)時(shí)監(jiān)護(hù)系統(tǒng)設(shè)計(jì)[J];西安科技大學(xué)學(xué)報(bào);2015年01期

5 薛詩靜;高帥鋒;周平;;可穿戴式心電監(jiān)護(hù)系統(tǒng)設(shè)計(jì)及實(shí)現(xiàn)[J];中國醫(yī)療設(shè)備;2015年01期

6 張昕然;查誠;徐新洲;宋鵬;趙力;;基于LDA+kernel-KNNFLC的語音情感識別方法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期

7 曾小娟;蔣浩;李永鑫;;農(nóng)村留守初中生的心理健康與心理彈性、核心自我評價(jià)[J];中國心理衛(wèi)生雜志;2014年12期

8 陳煒亮;孫曉;;基于MFCCG-PCA的語音情感識別[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期

9 耿怡;安暉;李揚(yáng);江華;;可穿戴設(shè)備發(fā)展現(xiàn)狀和前景探析[J];電子科學(xué)技術(shù);2014年02期

10 魏平杰;樊興華;;語音傾向性分析中的特征抽取研究[J];計(jì)算機(jī)應(yīng)用研究;2014年12期

相關(guān)博士學(xué)位論文 前1條

1 李娜;基于人體運(yùn)動(dòng)狀態(tài)識別的可穿戴健康監(jiān)測系統(tǒng)研究[D];北京工業(yè)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前1條

1 凌錦雯;基于多特征的說話人分割與聚類的研究[D];中國科學(xué)技術(shù)大學(xué);2011年

,

本文編號:2033807

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2033807.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶05c02***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
果冻传媒在线观看免费高清| 精品偷拍一区二区三区| 日韩一区欧美二区国产| 中文字幕乱子论一区二区三区| 激情少妇一区二区三区| 91亚洲国产—区=区a| 亚洲国产精品久久网午夜| 日韩中文字幕视频在线高清版 | 在线免费不卡亚洲国产| 日本人妻中出在线观看| 久久天堂夜夜一本婷婷| 欧美黄色黑人一区二区| 午夜福利国产精品不卡| 一区二区日韩欧美精品| 亚洲中文字幕人妻系列| 日韩欧美第一页在线观看| 久久碰国产一区二区三区| 免费一级欧美大片免费看| 91超频在线视频中文字幕| 欧美日韩国产精品自在自线| 国产成人在线一区二区三区| 国产日韩欧美专区一区| 亚洲精品中文字幕欧美| 精品一区二区三区不卡少妇av | 91亚洲国产成人久久精品麻豆| 免费啪视频免费欧美亚洲| 五月激情综合在线视频| 欧美一区二区黑人在线| 区一区二区三中文字幕| 国产欧美一区二区久久 | 日韩人妻毛片中文字幕| 亚洲欧美中文字幕精品| 国产熟女高清一区二区| 色婷婷丁香激情五月天| av在线免费观看一区二区三区| 好吊色免费在线观看视频| 亚洲精品深夜福利视频| 成人午夜免费观看视频| 日韩精品少妇人妻一区二区| 亚洲国产成人久久一区二区三区| 精品国产丝袜一区二区|