基于能量收集和BLE的低功耗有源標(biāo)簽設(shè)計(jì)
發(fā)布時(shí)間:2018-06-04 06:52
本文選題:有源標(biāo)簽 + 能量收集 ; 參考:《電子科技大學(xué)》2016年碩士論文
【摘要】:電子標(biāo)簽實(shí)質(zhì)上是一種無線通信技術(shù),接收端通過讀取發(fā)送端所傳遞的信息來進(jìn)行目標(biāo)識(shí)別。實(shí)際應(yīng)用中,根據(jù)電子標(biāo)簽是否需要外部電源供電或者內(nèi)部裝載電池,把電子標(biāo)簽分為無源標(biāo)簽、半無源標(biāo)簽和有源標(biāo)簽三種類型。有源標(biāo)簽與無源標(biāo)簽相比,有發(fā)射功率低、通信距離遠(yuǎn)、傳輸數(shù)據(jù)量大、可靠性高和兼容性好等特點(diǎn)。然而有源標(biāo)簽的應(yīng)用受到其內(nèi)置電池使用壽命的約束,怎樣提升有源標(biāo)簽的續(xù)航時(shí)間和降低其功耗是一項(xiàng)極具實(shí)現(xiàn)意義和挑戰(zhàn)的工作。降低有源標(biāo)簽功耗是提升電池續(xù)航能力的有效方式之一,但是并沒有從根本上提升電池續(xù)航能力。從太陽能中持續(xù)收集能量是從根本上解決電池持續(xù)供電問題,但是這些收集而來的能量必須是充足的。本課題為解決上述問題,主要研究?jī)?nèi)容和工作如下:第一,能量收集源分析。在詳細(xì)分析可以利用的環(huán)境能量后,選擇采用光能量收集。只要該標(biāo)簽位于有可見光的環(huán)境下,就能進(jìn)行能量收集,將收集到的能量存儲(chǔ)于儲(chǔ)能單元內(nèi)。第二,電源管理設(shè)計(jì)。在詳細(xì)分析各種儲(chǔ)能器件后,選擇采用可充電式鋰電池作為儲(chǔ)能單元。該設(shè)計(jì)對(duì)采集到的光能量升壓供鋰電池充電,并且實(shí)時(shí)監(jiān)測(cè)電池狀態(tài),電池過壓時(shí)停止充電,電池欠壓時(shí)切斷系統(tǒng)供電以保護(hù)電池。第三,BLE藍(lán)牙硬件設(shè)計(jì)。在詳細(xì)分析多種無線通信協(xié)議之后,選擇采用BLE作為本設(shè)計(jì)的通信協(xié)議。在選定通信協(xié)議后,對(duì)多種BLE芯片進(jìn)行分析對(duì)比,選擇采用功耗最低,性能較好的DA14580作為主芯片,并選擇了相應(yīng)PCB印制天線方案。該設(shè)計(jì)通信距離遠(yuǎn),功耗極低,是整個(gè)有源標(biāo)簽的核心部分,負(fù)責(zé)與終端設(shè)備的無線通信和定位。第四,有源標(biāo)簽軟件與終端軟件設(shè)計(jì)。詳細(xì)分析iBeacon通信協(xié)議后,在BLE4.0協(xié)議棧上利用C語言編寫符合iBeacon通信協(xié)議的iBeacon基站程序,并且在硬件設(shè)計(jì)低功耗的基礎(chǔ)上達(dá)到軟件設(shè)計(jì)低功耗。利用Java語言開發(fā)了一款識(shí)別該有源標(biāo)簽的應(yīng)用軟件,能夠顯示通信信息,并具有測(cè)距功能。設(shè)計(jì)完成后,對(duì)該有源標(biāo)簽進(jìn)行了功能和性能測(cè)試,給出了該有源標(biāo)簽的測(cè)試數(shù)據(jù)。測(cè)試數(shù)據(jù)表明,該有源標(biāo)簽工作良好,在光照充足的條件下,標(biāo)簽?zāi)軌虺掷m(xù)工作,已達(dá)到設(shè)計(jì)要求,解決了有源標(biāo)簽電池更換問題。
[Abstract]:Tag is essentially a wireless communication technology. The receiver reads the information transmitted by the sender to identify the target. In practical application, the tag is divided into three types: passive tag, semi-passive tag and active tag according to whether the tag needs external power supply or internal loading battery. Compared with passive tag, active tag has the advantages of low transmission power, long communication distance, large amount of transmission data, high reliability and good compatibility. However, the application of active tag is restricted by its built-in battery life. How to improve the lifetime of active tag and reduce its power consumption is a significant and challenging task. Reducing the power consumption of active tags is one of the effective ways to improve the battery life capacity, but it does not fundamentally improve the battery life capacity. Continuous energy collection from solar energy is a fundamental solution to the problem of continuous battery power supply, but this energy collection must be sufficient. In order to solve the above problems, the main research contents and work are as follows: first, energy collection source analysis. After detailed analysis of available environmental energy, light energy collection is chosen. As long as the label is in visible light, the energy can be collected and stored in the energy storage unit. Second, power management design. After detailed analysis of various energy storage devices, the rechargeable lithium battery is selected as the energy storage unit. This design can charge the collected light energy to the lithium battery, and monitor the battery status in real time, stop charging when the battery is overvoltage, and cut off the power supply to protect the battery when the battery is under voltage. Third, BLE Bluetooth hardware design. After detailed analysis of various wireless communication protocols, BLE is chosen as the communication protocol of this design. After selecting the communication protocol, this paper analyzes and compares the various BLE chips, chooses the DA14580 with the lowest power consumption and better performance as the main chip, and selects the corresponding PCB printed antenna scheme. The design has long communication distance and low power consumption. It is the core part of the active tag and is responsible for wireless communication and positioning with terminal equipment. Fourth, active label software and terminal software design. After the detailed analysis of iBeacon communication protocol, the iBeacon base station program which conforms to iBeacon communication protocol is written in C language on the BLE4.0 protocol stack, and the low power consumption of software is achieved on the basis of low power consumption in hardware design. An application software to identify the active tag is developed by using Java language. It can display the communication information and has the function of ranging. After the design is completed, the function and performance of the active tag are tested, and the test data of the active tag are given. The test data show that the active label works well, and the tag can work continuously under sufficient illumination, which has met the design requirements and solved the problem of battery replacement for active label.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN925;TM619
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 ;美國:ABI發(fā)布RFID應(yīng)用調(diào)查報(bào)告[J];中國防偽報(bào)道;2010年01期
2 高金萍;石z閹,
本文編號(hào):1976421
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1976421.html
最近更新
教材專著