微波信號(hào)光纖傳輸穩(wěn)相技術(shù)研究
本文選題:微波信號(hào) + 光纖傳輸; 參考:《電子科技大學(xué)》2016年碩士論文
【摘要】:在當(dāng)代信息傳輸技術(shù)中,光纖以其帶寬大、傳輸損耗小、抗電磁干擾等優(yōu)點(diǎn),廣泛應(yīng)用在國防、航天、通訊、天文觀測等領(lǐng)域。利用光纖進(jìn)行高頻段微波信號(hào)的傳輸,已經(jīng)成為微波信號(hào)傳輸?shù)闹饕夹g(shù)手段。由于光纖極易受到外部環(huán)境,如溫度、應(yīng)力等因素的影響,在信號(hào)長距離光纖傳輸條件下,該作用隨著傳輸距離而累積,導(dǎo)致內(nèi)部傳輸?shù)奈⒉ㄐ盘?hào)的相位產(chǎn)生抖動(dòng),使接收信號(hào)質(zhì)量劣化。因此,對光纖中微波信號(hào)相位的檢測與鏈路相位穩(wěn)定技術(shù)的研究至關(guān)重要,也成為近年來高精度時(shí)頻傳輸系統(tǒng)和天文觀測領(lǐng)域的重點(diǎn)研究方向。為了對已有光纖傳輸鏈路中微波信號(hào)的相位波動(dòng)進(jìn)行檢測與補(bǔ)償,本文首先對近十年來微波信號(hào)光纖穩(wěn)相傳輸系統(tǒng)的設(shè)計(jì)方案進(jìn)行了分析與比較,通過進(jìn)行參數(shù)與系統(tǒng)結(jié)構(gòu)的對比,提出了已有穩(wěn)相系統(tǒng)具有方案復(fù)雜、技術(shù)難度大、適用范圍窄等問題;探討了造成光纖傳輸鏈路中微波信號(hào)相位波動(dòng)的因素;通過結(jié)合實(shí)際應(yīng)用場景,保留原始光纖通信鏈路的結(jié)構(gòu)與參數(shù),設(shè)計(jì)了可嵌入式、具有“在線透明”特點(diǎn)的模塊化相位檢測與穩(wěn)相系統(tǒng);詳細(xì)介紹了穩(wěn)相系統(tǒng)的閉環(huán)控制原理與相位檢測和補(bǔ)償技術(shù)的實(shí)現(xiàn)方案;測試了各個(gè)模塊的實(shí)際性能,最終搭建了3GHz微波信號(hào)光纖穩(wěn)相傳輸鏈路,實(shí)現(xiàn)了對原始光纖傳輸系統(tǒng)中信號(hào)無干擾的相位檢測與補(bǔ)償技術(shù),補(bǔ)償了原傳輸系統(tǒng)中微波信號(hào)的延遲波動(dòng)。利用傳統(tǒng)電子技術(shù)與高精度延遲控制技術(shù),實(shí)現(xiàn)了高精度微波信號(hào)相位差檢測與光纖鏈路穩(wěn)相功能。本文對多普勒環(huán)路的設(shè)計(jì)方案進(jìn)行改進(jìn),通過本地信號(hào)與遠(yuǎn)端反射信號(hào)的相位差檢測,利用獲得的相位電壓信號(hào)控制高精度光程補(bǔ)償模塊,采用比例-積分-微分算法實(shí)現(xiàn)環(huán)路相位差檢測與閉環(huán)控制。首次將相位檢測與控制實(shí)現(xiàn)模塊化設(shè)計(jì),并嵌入到已有光纖傳輸鏈路中,實(shí)現(xiàn)了“在線透明”的穩(wěn)相方案。最終得到了微波信號(hào)光纖傳輸鏈路中,延遲波動(dòng)14ps范圍內(nèi)的有效補(bǔ)償,補(bǔ)償精度達(dá)±1ps。
[Abstract]:In modern information transmission technology, optical fiber is widely used in national defense, aerospace, communication, astronomical observation and other fields because of its large bandwidth, low transmission loss, anti-electromagnetic interference and other advantages. The transmission of high frequency microwave signal by optical fiber has become the main technical means of microwave signal transmission. Because optical fiber is easily affected by external environment, such as temperature, stress and so on, under the condition of long distance optical fiber transmission, the effect accumulates with the transmission distance, which results in the phase jitter of the microwave signal transmitted internally. Degrade the quality of the received signal. Therefore, it is very important to study the phase detection and link phase stabilization technology of microwave signal in optical fiber, and it has become a key research direction in the field of high-precision time-frequency transmission system and astronomical observation in recent years. In order to detect and compensate the phase fluctuation of microwave signal in the existing optical fiber transmission link, this paper first analyzes and compares the design scheme of the optical fiber stabilized phase transmission system for microwave signal in recent ten years. By comparing the parameters with the system structure, the paper points out that the existing phase stabilization system has complex scheme, high technical difficulty and narrow application scope, and discusses the factors that cause the microwave signal phase fluctuation in optical fiber transmission link. A modularized phase detection and phase stabilization system is designed which can be embedded and has the characteristics of "online transparency" by combining the practical application scenario and retaining the structure and parameters of the original optical fiber communication link. The closed-loop control principle of phase stabilization system and the realization of phase detection and compensation technology are introduced in detail, and the practical performance of each module is tested. Finally, the 3GHz microwave signal optical fiber stabilized transmission link is built. The phase detection and compensation technology of the original optical fiber transmission system without interference is realized, and the delay fluctuation of the microwave signal in the original transmission system is compensated. Using traditional electronic technology and high precision delay control technology, the phase difference detection of high precision microwave signal and the phase stabilization function of optical fiber link are realized. In this paper, the design scheme of Doppler loop is improved. By detecting the phase difference between the local signal and the remote reflection signal, the phase voltage signal is used to control the high-precision optical path compensation module. The proportional-integral-differential algorithm is used to detect the loop phase difference and close-loop control. For the first time, the design of phase detection and control is modularized and embedded in the existing optical fiber transmission link to realize the phase stabilization scheme of "online transparency". Finally, the effective compensation in the 14ps range of delay fluctuation in the optical fiber transmission link of microwave signal is obtained, and the compensation accuracy is 鹵1 ps.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN929.11
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 南利平 ,呂洪國;不要追求高檔的微波信號(hào)源[J];國外電子測量技術(shù);1999年03期
2 阮錦屏;一種改善和監(jiān)視射頻或微波信號(hào)相位噪聲的新方法[J];電子學(xué)報(bào);1990年05期
3 ;泰克確立寬帶射頻/微波信號(hào)發(fā)生能力新指標(biāo)[J];國外電子測量技術(shù);2011年02期
4 ;健康·新知[J];新聞周刊;2002年33期
5 映青;;LSA發(fā)射機(jī)[J];半導(dǎo)體情報(bào);1972年01期
6 王沁泉;陳福深;;光學(xué)外差法產(chǎn)生微波信號(hào)特性的研究[J];半導(dǎo)體光電;2009年06期
7 ;WTX-3固體信號(hào)源的研制[J];電子測量技術(shù);1977年03期
8 ;R&S SMF100A為微波信號(hào)源樹立了信號(hào)純度和輸出功率的新標(biāo)準(zhǔn)[J];電子測試;2009年08期
9 劉才斌;魏友國;陳運(yùn)濤;;VXI微波信號(hào)源儀器模塊的設(shè)計(jì)與實(shí)現(xiàn)[J];微計(jì)算機(jī)信息;2006年04期
10 賈青松;王天樞;張鵬;孫鴻偉;董科研;劉鑫;孔梅;姜會(huì)林;;基于雙波長布里淵光纖激光器的微波信號(hào)產(chǎn)生[J];中國激光;2014年07期
相關(guān)會(huì)議論文 前1條
1 胡文華;許東兵;雙愛瓊;王竹;;虛擬儀器在微波信號(hào)源中設(shè)計(jì)的應(yīng)用[A];第六屆全國計(jì)算機(jī)應(yīng)用聯(lián)合學(xué)術(shù)會(huì)議論文集[C];2002年
相關(guān)博士學(xué)位論文 前4條
1 郭勇;微波信號(hào)光子學(xué)產(chǎn)生及處理的理論與實(shí)驗(yàn)研究[D];電子科技大學(xué);2016年
2 喬云飛;基于微波光子學(xué)的可調(diào)微波信號(hào)源[D];浙江大學(xué);2013年
3 李沫;RoF系統(tǒng)中60GHz傳輸技術(shù)及光域微波信號(hào)處理技術(shù)研究[D];清華大學(xué);2011年
4 于源;全光微波信號(hào)處理技術(shù)的研究[D];華中科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 梁建惠;光電振蕩器的性能與設(shè)計(jì)研究[D];貴州大學(xué);2015年
2 曹春雨;基于FPGA的窄脈沖微波信號(hào)參數(shù)測試的研究與實(shí)現(xiàn)[D];南京理工大學(xué);2014年
3 李卉梓;基于光子學(xué)技術(shù)的相位可調(diào)諧倍頻微波信號(hào)發(fā)生器的研究[D];華中科技大學(xué);2014年
4 翁俊;微波信號(hào)光纖穩(wěn)相傳輸研究[D];西南交通大學(xué);2016年
5 童玲;C波段微波信號(hào)相干光傳輸關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2016年
6 楊鳳驍;微波信號(hào)光纖傳輸穩(wěn)相技術(shù)研究[D];電子科技大學(xué);2016年
7 曹偉娜;基于微波光子技術(shù)的微波信號(hào)參數(shù)提取[D];西南交通大學(xué);2014年
8 劉巖龍;二進(jìn)制編碼微波信號(hào)光子學(xué)生成研究[D];西南交通大學(xué);2014年
9 周威;基于電光外調(diào)制的高倍頻微波信號(hào)光子學(xué)生成研究與實(shí)驗(yàn)[D];西南交通大學(xué);2014年
10 王昀;光子微波信號(hào)頻譜分析技術(shù)研究[D];浙江大學(xué);2012年
,本文編號(hào):1949612
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1949612.html