基于激光雷達(dá)的室內(nèi)同步建圖與定位系統(tǒng)研究
本文選題:同步建圖與定位 + 激光雷達(dá); 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:同步建圖與定位是當(dāng)今在未知環(huán)境中實(shí)現(xiàn)定位過程中必須解決的關(guān)鍵問題,采用激光雷達(dá)進(jìn)行二維地圖的建立和定位是常用的實(shí)現(xiàn)手段之一。其中涉及到的主要問題為遞增建圖與定位,即通過激光雷達(dá)對未知環(huán)境進(jìn)行掃描,獲取當(dāng)前時(shí)刻的觀測與原有創(chuàng)建地圖之間的變換關(guān)系。本文圍繞激光雷達(dá)的數(shù)據(jù)采集,數(shù)據(jù)預(yù)處理以及數(shù)據(jù)之間的匹配等問題,研究如何通過激光雷達(dá)掃描的數(shù)據(jù)建立地圖并實(shí)時(shí)更新地圖與定位,主要的研究內(nèi)容包括:激光雷達(dá)的數(shù)據(jù)獲取。在未知環(huán)境中,數(shù)據(jù)采集和處理是進(jìn)行后續(xù)工作的前提。研究激光雷達(dá)的數(shù)據(jù)采集和傳輸過程,對柵格地圖的建立進(jìn)行研究。在分析了原有的柵格地圖建立方法后,提出簡化的柵格地圖創(chuàng)建方法,將二維平面均分成等面積的柵格,計(jì)算每一個(gè)掃描點(diǎn)所落入的柵格的位置,并保存該柵格,將所有保存的柵格輸出顯示得到柵格地圖;诜种Фń绲乃阉髌ヅ渌惴,獲取當(dāng)前時(shí)刻的掃描點(diǎn)集與原有創(chuàng)建的地圖之間的變換關(guān)系。在不求取對應(yīng)特征點(diǎn)的情況下,提出基于分支定界的搜索匹配策略,對其可行性進(jìn)行證明,并與當(dāng)前所存在的基于遍歷搜索的匹配算法在時(shí)間復(fù)雜度上進(jìn)行分析比較。在此基礎(chǔ)上,提出基于松弛因子的優(yōu)化搜索算法,通過松弛因子自適應(yīng)的改變搜索步長,以減小分支定界搜索過程中步長對搜索結(jié)果的影響;谧兓鶞(zhǔn)點(diǎn)集的多幀匹配算法。提出兩兩匹配的策略,將所采集到的點(diǎn)集都轉(zhuǎn)換至第一幀點(diǎn)集所在的坐標(biāo)系下,完成匹配并輸出定位結(jié)果。為減小多幀匹配過程中兩兩匹配的累計(jì)誤差,提出倒匹配的匹配策略,并對采集到的點(diǎn)集進(jìn)行回環(huán)檢測,完成多幀匹配優(yōu)化。隨著配幀數(shù)的增加,累計(jì)誤差的出現(xiàn)會使地圖的精度降低,通過提取地圖中的直線來改善顯示效果。對傳統(tǒng)的分割和合并算法進(jìn)行分析和改進(jìn),并進(jìn)行仿真驗(yàn)證。實(shí)時(shí)仿真系統(tǒng)實(shí)現(xiàn)。在Visual Studio平臺下進(jìn)行實(shí)時(shí)仿真。首先,對所需要的PCL庫和激光雷達(dá)的驅(qū)動文件進(jìn)行配置;其次,介紹并設(shè)計(jì)實(shí)時(shí)仿真過程中的總體實(shí)現(xiàn)方案以及總體流程;最后實(shí)現(xiàn)對未知環(huán)境下的同步建圖和定位。
[Abstract]:Synchronous mapping and location is a key problem to be solved in the process of realizing localization in unknown environment. The establishment and localization of two-dimensional maps using lidar is one of the commonly used methods. The main problems involved are incremental mapping and location, that is, scanning the unknown environment through lidar to obtain the transformation relationship between the observation of the current moment and the original map. Based on the problems of data acquisition, data preprocessing and data matching between lidar, this paper studies how to set up maps and update maps and location in real time through the data scanned by lidar. The main research contents include: data acquisition of lidar. In unknown environment, data acquisition and processing is the premise of follow-up work. The data acquisition and transmission process of lidar is studied, and the establishment of raster map is studied. After analyzing the original raster map building method, a simplified raster map creation method is proposed. The two-dimensional plane is divided into grids of equal area, the location of the grid falling into each scanning point is calculated, and the grid is saved. Display all saved grid output to get grid map. The search matching algorithm based on branch and bound is used to obtain the transformation relationship between the scanning point set at the current moment and the original map. Without finding the corresponding feature points, a search matching strategy based on branch and bound is proposed, its feasibility is proved, and the time complexity of the existing matching algorithm based on traversal search is analyzed and compared. On this basis, an optimal search algorithm based on relaxation factor is proposed. The relaxation factor adaptively changes the search step size to reduce the influence of step size on the search results in the process of branch and bound search. Multi-frame matching algorithm based on variable reference set. A pairwise matching strategy is proposed in which the collected point sets are converted to the coordinate system in which the first frame points set is located. The matching is completed and the location results are outputted. In order to reduce the cumulative error of pairwise matching in the process of multi-frame matching, a matching strategy of inverted matching is proposed, and the collected point sets are detected in return loop to achieve the optimization of multi-frame matching. With the increase of frame allocation, the accuracy of map will be reduced with the emergence of cumulative error, and the display effect can be improved by extracting straight lines from the map. The traditional segmentation and merging algorithms are analyzed and improved, and the simulation results are verified. Real-time simulation system is implemented. Real-time simulation is carried out on Visual Studio platform. Firstly, the required PCL library and the driver file of lidar are configured; secondly, the overall implementation scheme and overall flow in the real-time simulation process are introduced and designed; finally, the synchronous mapping and location in unknown environment are realized.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 史風(fēng)棟;劉文皓;汪鑫;丁娟;史屹君;修春波;;室內(nèi)激光雷達(dá)導(dǎo)航系統(tǒng)設(shè)計(jì)[J];紅外與激光工程;2015年12期
2 鄭曉璐;潘廣貞;楊劍;楊小青;;基于Hausdorff距離改進(jìn)的ICP算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年09期
3 紀(jì)愛敏;殷旭;;基于自適應(yīng)松弛因子的協(xié)同優(yōu)化方法[J];計(jì)算機(jī)集成制造系統(tǒng);2014年07期
4 林傳分;覃錫忠;賈振紅;;基于EEMD的全質(zhì)心UWB室內(nèi)定位算法[J];激光雜志;2014年05期
5 張曉;張愛武;王致華;;基于改進(jìn)正態(tài)分布變換算法的點(diǎn)云配準(zhǔn)[J];激光與光電子學(xué)進(jìn)展;2014年04期
6 鐘瑩;張蒙;;基于改進(jìn)ICP算法的點(diǎn)云自動配準(zhǔn)技術(shù)[J];控制工程;2014年01期
7 梁志偉;陳燕燕;朱松豪;高翔;徐國政;;基于視覺詞典的單目視覺閉環(huán)檢測算法[J];模式識別與人工智能;2013年06期
8 鄧中亮;余彥培;袁協(xié);萬能;楊磊;;室內(nèi)定位現(xiàn)狀與發(fā)展趨勢研究(英文)[J];中國通信;2013年03期
9 汪苑;林錦國;;幾種常用室內(nèi)定位技術(shù)的探討[J];中國儀器儀表;2011年02期
10 苗斌;;GPS輔助定位技術(shù)的現(xiàn)狀與比較[J];企業(yè)導(dǎo)報(bào);2009年04期
相關(guān)博士學(xué)位論文 前1條
1 張宴龍;室內(nèi)定位關(guān)鍵技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2014年
,本文編號:1890491
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1890491.html