變電站監(jiān)測(cè)中基于虛擬多天線的無(wú)線物聯(lián)網(wǎng)抗干擾研究
本文選題:變電站 + 脈沖噪聲 ; 參考:《華北電力大學(xué)(北京)》2017年碩士論文
【摘要】:高壓輸變電設(shè)備是電網(wǎng)的重要構(gòu)成元件,積極引入物聯(lián)網(wǎng)技術(shù),有助于提升設(shè)備監(jiān)測(cè)診斷、運(yùn)行管理水平,推進(jìn)智能電網(wǎng)建設(shè)。無(wú)線監(jiān)測(cè)設(shè)備作為物聯(lián)網(wǎng)的核心部分之一,適用于長(zhǎng)期、實(shí)時(shí)、大規(guī)模、自動(dòng)化的環(huán)境監(jiān)測(cè)。針對(duì)物聯(lián)網(wǎng)絡(luò)在變電站的應(yīng)用,國(guó)內(nèi)外開展了廣泛的研究,但是這些研究都沒(méi)有考慮變電站中無(wú)線物聯(lián)網(wǎng)設(shè)備的電磁兼容性。由開關(guān)操作、雷擊和故障產(chǎn)生的瞬態(tài)電磁干擾信號(hào),含有豐富的高頻成分,極易通過(guò)空間耦合對(duì)二次設(shè)備形成干擾。瞬態(tài)電磁干擾上升時(shí)間極短,主要集中在0~8μs內(nèi),持續(xù)時(shí)間可長(zhǎng)達(dá)20μs,主頻范圍覆蓋到2.5GHz,會(huì)對(duì)工作在2.4GHz的物聯(lián)網(wǎng)監(jiān)測(cè)設(shè)備產(chǎn)生同頻干擾。通過(guò)加屏蔽外殼雖然可以提高無(wú)線傳感器的抗干擾能力,但是電磁干擾仍然可以通過(guò)電磁輻射途徑耦合到傳感器的天線上導(dǎo)致傳輸數(shù)據(jù)丟包。另一方面,物聯(lián)網(wǎng)無(wú)線資源分配方面的研究,必須考慮能量效率和能量使用的優(yōu)化。由于監(jiān)測(cè)終端的電池容量有限,一旦忽視數(shù)據(jù)傳輸中對(duì)能量效率的優(yōu)化,將使得數(shù)據(jù)傳輸由于能量枯竭而中斷,重要信息無(wú)法及時(shí)傳達(dá),同時(shí),已有論文經(jīng)初步研究了頻譜效率和能量效率之間的內(nèi)在關(guān)聯(lián),其研究表明,在考慮實(shí)際電路功率損耗的情況下,頻譜效率和能量效率不再是簡(jiǎn)單的單調(diào)遞減關(guān)系,而是隨著頻譜效率的增加,能量效率呈現(xiàn)先單調(diào)遞增后單調(diào)遞減的特性。如果一味追求高頻譜效率和高吞吐量,將會(huì)帶來(lái)移動(dòng)終端能量效率的大幅度下降。無(wú)線物聯(lián)網(wǎng)設(shè)備由于受到功耗、價(jià)格、體積三方面因素的制約,無(wú)法使用基于多天線與復(fù)雜數(shù)字信號(hào)處理的抗同頻干擾,由于無(wú)線物聯(lián)網(wǎng)設(shè)備節(jié)點(diǎn)眾多且冗余度高,通過(guò)單天線節(jié)點(diǎn)間的互相協(xié)作可以構(gòu)成虛擬多天線進(jìn)行傳輸。虛擬多天線在發(fā)射端通過(guò)多天線傳輸相同的數(shù)據(jù),在接收端通過(guò)相干合成多徑信號(hào)來(lái)獲得分集增益;谶@種思想,本論文結(jié)合變電站特殊的業(yè)務(wù)場(chǎng)景,初步給出了變電站中虛擬多天線物聯(lián)網(wǎng)系統(tǒng)架構(gòu)。其次,對(duì)變電站中一次設(shè)備產(chǎn)生的脈沖噪聲特性進(jìn)行了深入的分析研究,提出了“基于虛擬多天線結(jié)合先進(jìn)編碼的抗瞬態(tài)電磁干擾技術(shù)”,通過(guò)MATALB建模脈沖噪聲模型和虛擬多天線系統(tǒng)模型,從能效和魯棒性兩個(gè)方面,驗(yàn)證了智能電網(wǎng)環(huán)境下虛擬多天線物理網(wǎng)技術(shù)應(yīng)用的可行性。
[Abstract]:High voltage transmission and transformation equipment is an important component of power grid. The introduction of Internet of things technology will help to improve equipment monitoring and diagnosis, operation management level, and promote the construction of smart grid. As one of the core parts of the Internet of things, wireless monitoring equipment is suitable for long-term, real-time, large-scale and automatic environmental monitoring. For the application of WLAN in substation, extensive research has been carried out at home and abroad, but the electromagnetic compatibility of wireless IoT devices in substation has not been taken into account in these studies. The transient electromagnetic interference signals produced by switch operation, lightning strike and fault contain rich high frequency components, which can easily interfere with the secondary equipment by spatial coupling. The rise time of transient electromagnetic interference is very short, mainly concentrated in 0 ~ 8 渭 s, the duration can be up to 20 渭 s, and the main frequency range is 2.5 GHz, which will cause the same frequency interference to the IoT monitoring equipment working in 2.4GHz. Although the anti-jamming ability of wireless sensor can be improved by adding shielded shell, electromagnetic interference can still be coupled to the antenna of the sensor by electromagnetic radiation to cause data packet loss. On the other hand, the optimization of energy efficiency and energy use must be considered in the research of wireless resource allocation in the Internet of things. Because of the limited battery capacity of the monitoring terminal, if the optimization of energy efficiency in data transmission is ignored, the data transmission will be interrupted because of energy depletion, and the important information can not be transmitted in time, at the same time, The intrinsic relationship between spectrum efficiency and energy efficiency has been preliminarily studied in this paper. The results show that the spectral efficiency and energy efficiency are no longer a simple monotone decreasing relation when considering the actual circuit power loss. However, with the increase of spectral efficiency, the energy efficiency increases monotonously and then decreases. If pursuing high spectral efficiency and high throughput, the energy efficiency of mobile terminal will be greatly reduced. Due to the restriction of power consumption, price and volume, wireless Internet of things equipment can not be used to resist co-frequency interference based on multi-antenna and complex digital signal processing, because of the large number of nodes and high redundancy of wireless Internet of things equipment. Virtual multiple antennas can be transmitted through the cooperation of single antenna nodes. The virtual multi-antenna transmits the same data through the multi-antenna at the transmitter, and the diversity gain is obtained by the coherent synthesis of the multipath signal at the receiving end. Based on this idea, the architecture of virtual multi-antenna IOT system in substation is presented in this paper. Secondly, the characteristics of impulse noise generated by primary equipment in substation are analyzed and studied deeply, and a novel technology of anti-transient electromagnetic interference based on virtual multi-antenna combined with advanced coding is put forward. By using MATALB to model impulse noise model and virtual multi-antenna system model, the feasibility of using virtual multi-antenna physical network technology in smart grid environment is verified from two aspects of energy efficiency and robustness.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM63;TP391.44;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 魏歌;;不同物聯(lián)網(wǎng)架構(gòu)的分層標(biāo)準(zhǔn)的研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年01期
2 陳德輝;程蕾;;無(wú)線傳感器網(wǎng)絡(luò)在智能變電站中的應(yīng)用[J];電力系統(tǒng)通信;2012年05期
3 邵旭明;張亞?wèn)|;;淺談智能電網(wǎng)中的物聯(lián)網(wǎng)應(yīng)用[J];科技致富向?qū)?2011年32期
4 錢俊龍;;物聯(lián)網(wǎng)[J];文物保護(hù)與考古科學(xué);2011年03期
5 汪芳;張?jiān)朴?房秉毅;徐雷;魏進(jìn)武;;物聯(lián)網(wǎng)、云計(jì)算構(gòu)建智慧城市信息系統(tǒng)[J];移動(dòng)通信;2011年15期
6 饒威;丁堅(jiān)勇;李銳;;物聯(lián)網(wǎng)技術(shù)在智能電網(wǎng)中的應(yīng)用[J];華中電力;2011年02期
7 張衛(wèi)東;崔翔;;變電站和換流站電磁騷擾的測(cè)量與特征分析[J];廣東輸電與變電技術(shù);2009年01期
相關(guān)碩士學(xué)位論文 前8條
1 劉利彬;基于物聯(lián)網(wǎng)技術(shù)的智能抄表系統(tǒng)的研究[D];東北電力大學(xué);2014年
2 朱玉生;基于物聯(lián)網(wǎng)的輸變電設(shè)備故障診斷[D];湖南大學(xué);2013年
3 王玉峰;基于物聯(lián)網(wǎng)的智能電網(wǎng)傳感節(jié)點(diǎn)的研究[D];南京航空航天大學(xué);2012年
4 李繼琨;物聯(lián)網(wǎng)無(wú)線溫度傳感單元在變電站中的電磁兼容性研究[D];華北電力大學(xué);2012年
5 趙強(qiáng);基于物聯(lián)網(wǎng)技術(shù)的電力設(shè)備狀態(tài)檢修[D];華北電力大學(xué)(北京);2011年
6 蔡建爽;高壓變電站無(wú)線測(cè)溫裝置的電磁兼容性和有限元分析[D];天津大學(xué);2008年
7 劉肇熙;藍(lán)牙無(wú)線技術(shù)在變電站中的應(yīng)用研究[D];清華大學(xué);2008年
8 杜大全;變電站開關(guān)操作電磁騷擾數(shù)據(jù)的補(bǔ)償與統(tǒng)計(jì)分析[D];華北電力大學(xué)(河北);2006年
,本文編號(hào):1879086
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1879086.html