去中心化時差頻差直接定位方法
發(fā)布時間:2018-05-04 08:06
本文選題:直接定位 + 無源定位; 參考:《航空學報》2017年05期
【摘要】:針對原始利用時差頻差的直接定位(DPD)方法存在數(shù)據(jù)傳輸量和計算量大的瓶頸,提出了兩種去中心化直接定位方法。第1種方法采用去中心化配對方案,只將各觀測站截獲信號在站間進行一次傳輸,將數(shù)據(jù)傳輸和計算分散到各觀測站間并行計算互模糊函數(shù)(CAF),構造僅滿足滿秩條件的互模糊矩陣(CAM)。第2種方法根據(jù)推導的任意互模糊函數(shù)間關系公式,采用歸約方式去中心化的在各觀測站并行計算余下互模糊函數(shù),補全互模糊矩陣。兩種方法都降低了直接定位數(shù)據(jù)傳輸量,提高了計算效率。性能分析和仿真實驗表明本文兩種方法精度性能優(yōu)于兩步定位方法,在低信噪比時兩種方法都可達到比較理想的精度性能,在高信噪比時第2種方法與原始直接定位方法的精度性能相當。
[Abstract]:Aiming at the bottleneck of data transmission and computation in the original DPDs based on time difference frequency difference (TDOA), two decentralization direct localization methods are proposed. In the first method, a decentralization pairing scheme is adopted, in which the intercepted signals of each station are transmitted only once between the stations. The data transmission and computation are dispersed to the parallel computation of the mutual ambiguity function (CAFF) among the observational stations, and the mutual fuzzy matrix which satisfies only the full rank condition is constructed. The second method is based on the derived formula of the relationship between arbitrary mutual fuzzy functions. The reduction method is used to decentralize the remaining mutual fuzzy functions in parallel at each observation station to complement the total mutual fuzzy matrix. Both methods reduce the amount of direct location data transmission and improve the computational efficiency. The performance analysis and simulation results show that the accuracy performance of the two methods is better than that of the two-step positioning method, and the two methods can achieve ideal precision performance at low SNR. The accuracy of the second method is comparable to that of the original direct location method at high signal-to-noise ratio (SNR).
【作者單位】: 西安電子科技大學電子信息攻防對抗與仿真技術教育部重點實驗室;
【基金】:國家“973”計劃(61**81) 國家“863”計劃(2014AA80**086H) 中央高;究蒲袠I(yè)務費專項資金(JB140203)~~
【分類號】:TN95
【相似文獻】
相關期刊論文 前2條
1 王帆;柯煒;;一種基于RBF神經(jīng)網(wǎng)絡輔助的直接定位新方法[J];南京師范大學學報(工程技術版);2011年02期
2 ;[J];;年期
,本文編號:1842254
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1842254.html
最近更新
教材專著