非接觸式生命信號(hào)特征提取方法研究
發(fā)布時(shí)間:2018-05-01 11:11
本文選題:非接觸式 + 時(shí)分短時(shí)窗 ; 參考:《南京理工大學(xué)》2017年碩士論文
【摘要】:非接觸式生命信號(hào)檢測技術(shù)是利用雷達(dá)遠(yuǎn)距離測量人體呼吸、心跳特征的新興技術(shù)。近年來,隨著檢測基礎(chǔ)理論的完善,硬件成本的降低,該技術(shù)逐漸進(jìn)入實(shí)際應(yīng)用階段。本文正是在這樣的背景下,針對實(shí)際應(yīng)用中的家庭監(jiān)護(hù)、醫(yī)療檢測兩種熱點(diǎn)場景,分別研究了兩類生命信號(hào)特征提取方法:(1)面向家庭監(jiān)護(hù)應(yīng)用的實(shí)時(shí)提取方法。為提高實(shí)時(shí)性,本方法利用低頻載波下的小角度近似解調(diào),直接獲取近似生命信號(hào)。通過時(shí)域?qū)し宸▽粑l率進(jìn)行實(shí)時(shí)提取。針對傳統(tǒng)方法提取心率延時(shí)較長的缺點(diǎn),提出基于時(shí)分短時(shí)窗的心率快速提取算法。并通過仿真和實(shí)測驗(yàn)證,該算法單次測量延時(shí)為2-5s,相比傳統(tǒng)算法實(shí)時(shí)性顯著提高。(2)面向醫(yī)療檢測應(yīng)用的高精度提取方法。為提高精度,本方法在高頻載波下獲取高相位分辨率的雷達(dá)基帶信號(hào)。對實(shí)際硬件電路存在的正交失衡、直流偏置的影響,采用橢圓校準(zhǔn)算法、擬合圓算法對精密運(yùn)動(dòng)信息進(jìn)行恢復(fù)。提出擴(kuò)展DACM正交解調(diào)算法獲取生命信號(hào)線性波形。設(shè)計(jì)單擺實(shí)驗(yàn)測量了系統(tǒng)的正交失衡因子,同時(shí)驗(yàn)證了基帶信號(hào)預(yù)處理算法的必要性、可靠性。采用完全集合經(jīng)驗(yàn)?zāi)B(tài)算法(CEEMD)對呼吸、心跳信號(hào)進(jìn)行分離,經(jīng)與參考值對比,呼吸、心跳速率測量準(zhǔn)確率達(dá)到98%以上,提取出的心跳時(shí)域波形達(dá)到心搏間隔可測,為醫(yī)學(xué)診斷提供了具有參考意義的特征信息。對上述兩種應(yīng)用場景,分別搭建了實(shí)時(shí)提取系統(tǒng)、高精度提取系統(tǒng),完成了系統(tǒng)的調(diào)試工作,并分析兩種系統(tǒng)在人體抖動(dòng)和呼吸諧波干擾下的性能與誤差,并得出相應(yīng)的結(jié)論,為后續(xù)工作提供了一定思路。
[Abstract]:Non-contact life signal detection technology is a new technology which uses radar to measure human breathing and heartbeat characteristics. In recent years, with the improvement of detection theory and the reduction of hardware cost, the technology has gradually entered the stage of practical application. Under this background, this paper studies two kinds of life signal feature extraction methods: one is the real time extraction method for the family monitoring application, the other is the real time extraction method for the family monitoring application, aiming at the two hot spots of family monitoring and medical detection. In order to improve the real-time performance, the approximate life signal is obtained by using the small angle approximate demodulation under low frequency carrier. The time domain peak finding method was used to extract the respiratory frequency in real time. Aiming at the disadvantage of the traditional method, a fast heart rate extraction algorithm based on time division short time window is proposed. The simulation and experimental results show that the time delay of single measurement is 2-5s. Compared with the traditional algorithm, the real-time performance of the proposed algorithm is significantly improved. (2) A high-precision extraction method for medical detection applications is proposed. In order to improve the accuracy, a high phase resolution radar baseband signal is obtained under high frequency carrier. For the effect of orthogonal imbalance and DC bias in the actual hardware circuit, the elliptical calibration algorithm and the fitting circle algorithm are used to restore the precise motion information. An extended DACM quadrature demodulation algorithm is proposed to obtain linear waveform of life signal. A single pendulum experiment was designed to measure the orthogonal imbalance factor of the system, and the necessity and reliability of the baseband signal preprocessing algorithm were verified. The complete set empirical mode algorithm (CEEMD) was used to separate the respiration and heartbeat signals. Compared with the reference values, the measurement accuracy of respiration and heartbeat rate was over 98%, and the extracted time-domain waveform of heartbeat could be measured. It provides the characteristic information for medical diagnosis. For the two application scenarios mentioned above, the real-time extraction system and the high-precision extraction system are built, the debugging work of the system is completed, and the performance and error of the two systems under the human body jitter and respiratory harmonic interference are analyzed, and the corresponding conclusions are drawn. It provides some ideas for the follow-up work.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN911.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 南建設(shè);;信號(hào)細(xì)微特征分析技術(shù)研究[J];電訊技術(shù);2007年02期
2 郗瑩,李道京,呂楊,王建中;直升機(jī)信號(hào)的采集和分析[J];雷達(dá)與對抗;1999年04期
3 張建國,孫曉東,張禮勇;基于時(shí)頻分析的信號(hào)特征提取方法研究[J];電測與儀表;2005年06期
4 賈明武;數(shù)字蜂房TDMA發(fā)射信號(hào)的測量[J];電子質(zhì)量;1994年11期
5 朱健東;馮新?lián)P;唐江;趙擁軍;;新截獲模型下的對稱三角LFMCW信號(hào)的檢測與參數(shù)估計(jì)[J];信號(hào)處理;2013年06期
6 黃,
本文編號(hào):1829084
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1829084.html
最近更新
教材專著