基于特征空間MUSIC算法的相干信號波達方向空間平滑估計
發(fā)布時間:2018-04-30 10:30
本文選題:信息處理技術(shù) + 波達方向估計。 參考:《吉林大學(xué)學(xué)報(工學(xué)版)》2017年01期
【摘要】:為了高效、準確地估計相干信號的波達方向(DOA),提出了一種基于特征空間多重信號分類(MUSIC)算法的空間平滑估計方法。首先對相干信號進行空間平滑處理,然后對其應(yīng)用特征空間MUSIC算法進行DOA的精確估計,使其最大限度地利用信號子空間和噪聲子空間的信息。本文方法并不影響非相關(guān)信號存在時DOA的估計,且還可以對信號源功率進行有效的估計,以提高對小能量信號的成功估計概率。與傳統(tǒng)空間平滑算法及修正MUSIC算法相比,本文方法具有更低的信噪比門限和更高的估計精度及分辨力。最后的仿真實驗驗證了本文方法的有效性和魯棒性。
[Abstract]:In order to estimate the DOA of coherent signals efficiently and accurately, a spatial smoothing estimation method based on feature space multi-multiple signal classification algorithm (MUSIC-based) is proposed. Firstly, the coherent signal is processed by spatial smoothing, and then the DOA is estimated accurately by using the eigenspace MUSIC algorithm to maximize the use of the information of the signal subspace and the noise subspace. The proposed method does not affect the estimation of DOA in the presence of non-correlated signals, and it can also effectively estimate the power of the signal source so as to improve the probability of successful estimation of small energy signals. Compared with the traditional spatial smoothing algorithm and the modified MUSIC algorithm, the proposed method has lower SNR threshold, higher estimation accuracy and higher resolution. Finally, the simulation results show the effectiveness and robustness of the proposed method.
,
本文編號:1824203
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1824203.html
最近更新
教材專著