干擾場(chǎng)景下車(chē)輛移動(dòng)通信網(wǎng)絡(luò)性能分析及優(yōu)化設(shè)計(jì)
本文選題:干擾場(chǎng)景 + 節(jié)點(diǎn)移動(dòng) ; 參考:《西南交通大學(xué)》2017年博士論文
【摘要】:隨著無(wú)線(xiàn)通信技術(shù)和國(guó)家交通事業(yè)的飛速發(fā)展,車(chē)聯(lián)網(wǎng)作為第五代(5G)移動(dòng)通信系統(tǒng)的一個(gè)重要應(yīng)用,越來(lái)越受到人們的關(guān)注。在未來(lái)車(chē)輛移動(dòng)通信網(wǎng)絡(luò)中,不僅要在“量”上要滿(mǎn)足移動(dòng)用戶(hù)多樣化業(yè)務(wù)需求,還要在“質(zhì)”上確保移動(dòng)用戶(hù)以更低的時(shí)延獲得更大的傳輸速率。隨著車(chē)載用戶(hù)數(shù)量不斷增加,在信息傳輸過(guò)程中,接收節(jié)點(diǎn)受到干擾的可能性越來(lái)越大。針對(duì)干擾和移動(dòng)這兩大問(wèn)題,本文考慮干擾處于高動(dòng)態(tài)場(chǎng)景下,即每一時(shí)刻,都會(huì)有新的干擾節(jié)點(diǎn)產(chǎn)生,從理論上分析了車(chē)輛移動(dòng)通信網(wǎng)絡(luò)的性能及其相應(yīng)的系統(tǒng)優(yōu)化設(shè)計(jì)。首先,本文研究高速公路場(chǎng)景,即源-中繼-目的節(jié)點(diǎn)移動(dòng)場(chǎng)景的通信鏈路中斷概率和最優(yōu)功率分配方案。在本研究中,假設(shè)中繼節(jié)點(diǎn)只受到噪聲的影響,目的節(jié)點(diǎn)只受到共道干擾(co-channel interference, CCI)的影響,并且干擾處于高移動(dòng)狀態(tài),即每一個(gè)時(shí)刻,干擾節(jié)點(diǎn)的數(shù)目和位置都有所不同。在這一模型的基礎(chǔ)上,本文得到了中斷概率的分析表達(dá)式和緊的下界,分析了兩跳鏈路對(duì)于端到端中斷概率的影響,源節(jié)點(diǎn)、中繼節(jié)點(diǎn)的發(fā)送功率對(duì)于端到端中斷概率的影響。此外,得到在源-中繼-目的節(jié)點(diǎn)鏈路移動(dòng)過(guò)程中,中斷概率的變化情況。當(dāng)源節(jié)點(diǎn)和中繼節(jié)點(diǎn)的發(fā)送功率之和受限時(shí),得到了中斷概率最小的最優(yōu)功率分配方案。接著,本文分析多跳車(chē)輛移動(dòng)通信網(wǎng)絡(luò)的端到端時(shí)延,并得到時(shí)延最小的最優(yōu)跳數(shù)的分析結(jié)果。在傳統(tǒng)的無(wú)線(xiàn)通信網(wǎng)絡(luò)時(shí)延分析中,通常假設(shè)中繼節(jié)點(diǎn)等間距分布在源節(jié)點(diǎn)和目的節(jié)點(diǎn)的連線(xiàn)上,并忽略了多跳鏈路跳數(shù)對(duì)于時(shí)延的影響。事實(shí)上,隨著跳數(shù)增多,每一跳的距離減小有利于時(shí)延的減小,但同時(shí)需要處理數(shù)據(jù)的時(shí)間會(huì)增多,從而使時(shí)延變大。本文對(duì)這一場(chǎng)景進(jìn)行了擴(kuò)展,考慮中繼服從三種分布場(chǎng)景下的端到端時(shí)延性能及最優(yōu)跳數(shù)分析,包括中繼等間距分布、中繼服從均勻分布以及中繼服從隨機(jī)路徑點(diǎn)移動(dòng)(random waypoint mobility,RWPM)模型分布。假設(shè)單跳網(wǎng)絡(luò)在干擾受限和噪聲受限場(chǎng)景下有相同的接收信干比(signal-to-interference ratio,SIR)和信噪比(signal-to-noise ratio, SNR),論文分析了單跳通信網(wǎng)絡(luò)在這兩種場(chǎng)景下的時(shí)延性能。通過(guò)比較中繼等間距分布和中繼服從均勻分布這兩種場(chǎng)景的時(shí)延性能,研究表明選擇在源節(jié)點(diǎn)和目的節(jié)點(diǎn)連線(xiàn)上等間距分布的中繼節(jié)點(diǎn)可以更有效地降低時(shí)延。中繼服從均勻分布類(lèi)似于靜止中繼節(jié)點(diǎn)的場(chǎng)景,中繼服從RWPM模型可視為移動(dòng)中繼節(jié)點(diǎn)場(chǎng)景。通過(guò)比較這兩種場(chǎng)景,本文的分析和仿真實(shí)驗(yàn)表明,移動(dòng)性有利于減小多跳信息傳輸?shù)臅r(shí)延。其次,本文分析了干擾受限場(chǎng)景車(chē)輛移動(dòng)通信網(wǎng)絡(luò)的連通度與移動(dòng)性之間的關(guān)系。在傳統(tǒng)的無(wú)線(xiàn)通信網(wǎng)絡(luò)連通概率分析工作中,大多假設(shè)接收節(jié)點(diǎn)不受干擾的影響,忽略了節(jié)點(diǎn)密度以及移動(dòng)場(chǎng)景下節(jié)點(diǎn)移動(dòng)性對(duì)于連通概率的影響。當(dāng)考慮節(jié)點(diǎn)之間的干擾時(shí),節(jié)點(diǎn)密度增大,節(jié)點(diǎn)之間的距離減小,則接收節(jié)點(diǎn)接收有用信號(hào)的強(qiáng)度增大,從而有利于提高通信質(zhì)量和連通概率。但節(jié)點(diǎn)密度增大,將導(dǎo)致接收節(jié)點(diǎn)受到的干擾增強(qiáng),從而通信質(zhì)量下降,直接影響網(wǎng)絡(luò)的連通概率。根據(jù)這一基本想法,本文推導(dǎo)出干擾場(chǎng)景下有限區(qū)間內(nèi)線(xiàn)性網(wǎng)絡(luò)全連通概率的上、下界,并得到全連通概率是節(jié)點(diǎn)密度的擬凹函數(shù)。在此基礎(chǔ)上,分析了移動(dòng)場(chǎng)景下節(jié)點(diǎn)移動(dòng)的平均速度與有限線(xiàn)性網(wǎng)絡(luò)連通概率之間的關(guān)系。再次,本文分析了隨機(jī)多址接入?yún)f(xié)議下,半雙工(half-duplex)和全雙工(full-duplex) 單跳信息傳輸系統(tǒng) 的隨機(jī)接入傳輸容量 (random access transport capacity,RATC)。假設(shè)接收節(jié)點(diǎn)選擇離它最近的節(jié)點(diǎn)作為發(fā)送節(jié)點(diǎn)進(jìn)行傳輸,從而節(jié)點(diǎn)之間的距離不是固定值,而是一個(gè)隨機(jī)變量。當(dāng)節(jié)點(diǎn)的隨機(jī)接入概率增大時(shí),意味著發(fā)送節(jié)點(diǎn)發(fā)送信息的機(jī)會(huì)增多,隨機(jī)接入傳輸容量可能提高,但同時(shí),接收節(jié)點(diǎn)受到的共道干擾節(jié)點(diǎn)數(shù)目增多,從而成功傳輸?shù)母怕蕼p小,傳輸次數(shù)可能增多,隨機(jī)接入傳輸容量可能減小。類(lèi)似地,當(dāng)SIR閾值增大時(shí),信道的最大傳輸速率會(huì)增大,隨機(jī)接入傳輸容量可能增大,但同時(shí)意味著單跳鏈路的成功概率減小,隨機(jī)接入傳輸容量可能變小。通過(guò)仿真實(shí)驗(yàn)驗(yàn)證了,隨機(jī)接入傳輸容量是節(jié)點(diǎn)的發(fā)送概率、SIR閾值的擬凹函數(shù),并得到全雙工系統(tǒng)的性能優(yōu)于半雙工系統(tǒng)的性能。最后,本文分析線(xiàn)性多跳譯碼轉(zhuǎn)發(fā)(decode-and-forward,DF)通信鏈路的吞吐量并得到對(duì)應(yīng)系統(tǒng)的優(yōu)化設(shè)計(jì)。在傳統(tǒng)的無(wú)線(xiàn)通信網(wǎng)絡(luò)吞吐量分析中,一般僅分析某一個(gè)系統(tǒng)參數(shù)與吞吐量之間的關(guān)系,少有系統(tǒng)參數(shù)聯(lián)合優(yōu)化的方案分析。本文研究了多跳無(wú)線(xiàn)通信網(wǎng)絡(luò)的跳數(shù)、SIR閾值與吞吐量之間的關(guān)系,揭示了固定跳數(shù)或SIR閾值,吞吐量是另一個(gè)參數(shù)的擬凹函數(shù)。根據(jù)吞吐量函數(shù)的結(jié)構(gòu)特點(diǎn),得到以多跳無(wú)線(xiàn)通信網(wǎng)絡(luò)吞吐量最大為目標(biāo),聯(lián)合優(yōu)化向量(跳數(shù)、SIR閾值)的算法。
[Abstract]:With the rapid development of wireless communication technology and national transportation, the Internet of vehicles, as an important application of the fifth generation (5G) mobile communication system, has attracted more and more attention. In the future vehicle mobile communication network, it is not only to meet the needs of the mobile users in the "quantity", but also to ensure the movement on the "quality". With the increasing number of users on the vehicle, the probability of receiving nodes is more and more likely to be disturbed in the process of information transmission. Considering the two major problems of interference and movement, this paper considers that the interference is in high dynamic scene, that is, a new interference node will be generated at every moment. The performance of the vehicle mobile communication network and its corresponding system optimization design are analyzed. First, this paper studies the highway scene, the communication link interrupt probability and the optimal power allocation scheme of the source relay destination node mobile scene. In this study, the relay node is assumed to be only affected by the noise, the destination node is only shared by the common channel. The interference (co-channel interference, CCI) is affected and the interference is in a high mobility state, that is, the number and location of the interference nodes are different at every moment. On the basis of this model, the analysis expression and the tight lower bounds of the interruption probability are obtained, and the influence of the two hop links on the end to end interrupt probability is analyzed, and the source node is analyzed. Point, the transmission power of the relay node affects the end to end interrupt probability. In addition, the change of the interruption probability is obtained during the link movement of the source relay destination node. When the sum of the transmission power of the source and relay nodes is limited, the optimal power allocation scheme is obtained for the minimum interruption probability. Then, the paper analyzes the multi hop vehicle. The end to end delay of a mobile communication network is analyzed. In the traditional time delay analysis of the wireless communication network, the distance between the relay nodes is usually assumed to be distributed on the connection of the source node and the destination node, and the effect of the multiple hop number on the delay is ignored. In fact, the number of hops increases as the number of hops increases. The reduction of each jump is beneficial to the decrease of time delay, but the time for processing data is increased and the time delay becomes larger. This paper extends this scene to consider the end to end delay performance and optimal hops analysis under three distributed scenarios, including the relay equidistance distribution, the relay obeys the uniform distribution, and the relay obeys the uniform distribution, and the relay obeys the uniform distribution, and the relay obeys the uniform distribution. The relay obeys the random path point movement (random waypoint mobility, RWPM) model distribution. It is assumed that the single hop network has the same receiver signal to dry ratio (signal-to-interference ratio, SIR) and the signal to noise ratio (signal-to-noise ratio, SNR) under the restricted and noisy scene. The paper analyzes the delay of the single hop communication network in these two scenarios. Performance. By comparing the delay performance of the two scenarios with the relay equidistance distribution and the relay obeying the uniform distribution, it is shown that the relay nodes selected in the source node and the destination node is more effective in reducing the delay. The relay obeys the stationary relay node and the relay obeys the RWPM model. It is considered as a mobile relay scene. By comparing these two scenarios, the analysis and simulation experiments in this paper show that mobility is beneficial to reduce the delay of multi hop information transmission. Secondly, this paper analyzes the connection between the connectivity and mobility of the vehicle mobile communication network with limited interference scene. In the analysis, most of the work assumes that the receiving node is not affected by interference, ignoring the node density and the influence of node mobility on the connectivity probability. When considering the interference between nodes, the density of nodes increases and the distance between nodes decreases, and the intensity of receiving nodes to receive useful signals increases, which is beneficial to the improvement of the connection. But the density of the node increases, which will lead to the enhancement of the interference received by the receiving node, thus the communication quality is reduced and the connectivity probability of the network is directly affected. Based on this basic idea, the upper and lower bounds of the total connectivity probability of the linear network in the finite interval under the interference scene are derived, and the total connectivity probability is the node density. On this basis, the relationship between the average velocity of node movement and the connectivity probability of a finite linear network is analyzed on this basis. The random access capacity (random access T) of the semi duplex (half-duplex) and full duplex (full-duplex) single hop information transmission system under the random multiple access protocol (random access Protocol) is analyzed. Ransport capacity, RATC). Assuming the receiving node selects the nearest node as the transmission node, the distance between the nodes is not a fixed value, but a random variable. When the node's random access probability increases, it means that the opportunity for sending the nodes to send the information is increased, but the capacity of the random access transmission may be improved, but the capacity of the random access transmission may be improved, but the probability of the random access transmission may be increased, but the capacity of the random access transmission may be improved, but At the same time, the number of common channel interference nodes received by the receiving node is increased, thus the probability of successful transmission decreases, the number of transmission may increase, and the random access transmission capacity may be reduced. Similarly, when the SIR threshold increases, the maximum transmission rate of the channel will increase and the random access transmission capacity may increase, but it also means the single hop link is formed at the same time. The power probability decreases and the random access transmission capacity may be smaller. The simulation experiment shows that the random access transmission capacity is the node's sending probability, the quasi concave function of the SIR threshold, and the performance of the full duplex system is superior to the half duplex system. Finally, this paper analyzes the linear multi hop code forwarding (decode-and-forward, DF) communication link. In the throughput analysis of the traditional wireless communication network, the relationship between the parameters and the throughput of a certain system is analyzed, and the scheme analysis of the joint optimization of the system parameters is seldom analyzed. This paper studies the number of hop, the relationship between the SIR threshold and the throughput, and the relationship between the threshold and the throughput. The fixed hop number or SIR threshold is shown, and the throughput is a quasi concave function of another parameter. According to the structure characteristics of the throughput function, the algorithm of combining the optimization of the vector (hop, SIR threshold) is obtained for the maximum throughput of the multi hop wireless communication network.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN929.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 艾五榮;移動(dòng)通信網(wǎng)絡(luò)優(yōu)化市場(chǎng)的現(xiàn)狀與前景——專(zhuān)訪(fǎng)珠海萬(wàn)禾技術(shù)有限公司總經(jīng)理郜鴻[J];移動(dòng)通信;2002年09期
2 張利華;張有光;;研究生《通信網(wǎng)絡(luò)理論基礎(chǔ)》的研究與實(shí)踐[J];理工高教研究;2005年06期
3 孫研;移動(dòng)通信網(wǎng)絡(luò)優(yōu)化的發(fā)展方向[J];電信工程技術(shù)與標(biāo)準(zhǔn)化;2005年03期
4 ;上海民航華東通信網(wǎng)絡(luò)發(fā)展有限公司[J];上海信息化;2008年08期
5 樊曉穎;;對(duì)通信網(wǎng)絡(luò)運(yùn)行與維護(hù)的探討[J];計(jì)算機(jī)光盤(pán)軟件與應(yīng)用;2012年04期
6 何子體;;信息社會(huì)與通信網(wǎng)絡(luò)發(fā)展分析[J];河南科技;2012年06期
7 龔才語(yǔ);;通信網(wǎng)絡(luò)優(yōu)化與提升探討[J];信息通信;2013年03期
8 柴振榮;通信網(wǎng)絡(luò)用軟件的改進(jìn)[J];管理科學(xué)文摘;1995年03期
9 鄭士貴;通信網(wǎng)絡(luò)的優(yōu)化利用[J];管理科學(xué)文摘;1996年06期
10 馬子麟;加拿大采用功效巨大的通信網(wǎng)絡(luò)[J];管理科學(xué)文摘;1999年12期
相關(guān)會(huì)議論文 前10條
1 馬懷東;楊秀武;;通信網(wǎng)絡(luò)發(fā)展,管理是關(guān)鍵[A];四川省通信學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集(二)[C];2006年
2 吳少紅;;淺談通信網(wǎng)絡(luò)的發(fā)展趨勢(shì)[A];海南省通信學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(2005)[C];2005年
3 周冬靜;;梧州市氣象局通信網(wǎng)絡(luò)的現(xiàn)狀及工作思考[A];2006年廣西氣象學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2006年
4 劉玄慶;張康定;;淺談我國(guó)鐵路通信網(wǎng)絡(luò)的今天和對(duì)今后的展望[A];四川省通信學(xué)會(huì)1999年學(xué)術(shù)年會(huì)論文集[C];1999年
5 黃淳;;國(guó)際通信網(wǎng)絡(luò)運(yùn)行集中管理平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn)[A];2007中國(guó)科協(xié)年會(huì)——通信與信息發(fā)展高層論壇論文集[C];2007年
6 徐蕾;陳金鷹;朱軍;;未來(lái)通信網(wǎng)絡(luò)的討論[A];四川省通信學(xué)會(huì)2012年學(xué)術(shù)年會(huì)論文集[C];2012年
7 劉龍;;通信網(wǎng)絡(luò)系統(tǒng)集成[A];OFweek寬帶通信與物聯(lián)網(wǎng)前沿技術(shù)研討會(huì)論文集[C];2013年
8 楊露菁;郝威;段立;;軍事通信網(wǎng)絡(luò)的可靠性和抗毀性研究[A];艦船電子裝備維修理論與應(yīng)用——中國(guó)造船工程學(xué)會(huì)電子修理學(xué)組第四屆年會(huì)暨信息裝備保障研討會(huì)論文集[C];2005年
9 周彬;陳新安;;淺析我國(guó)移動(dòng)通信網(wǎng)絡(luò)頻段的劃分及復(fù)用[A];中國(guó)通信學(xué)會(huì)通信建設(shè)工程技術(shù)委員會(huì)2010年年會(huì)論文集[C];2010年
10 梁快;隆克平;汪紀(jì)鋒;唐宏;鄺育軍;;移動(dòng)通信網(wǎng)絡(luò)尋呼新思路及其策略分析[A];第九屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 通文;通信網(wǎng)絡(luò)安全管理辦法三月起實(shí)施[N];通信產(chǎn)業(yè)報(bào);2010年
2 王正;“用戶(hù)驅(qū)動(dòng)”理念引領(lǐng)通信網(wǎng)絡(luò)變革[N];人民郵電;2001年
3 通訊員 郭運(yùn)鋒 閔佑朋;鄭州通信段建成通信網(wǎng)絡(luò)“千里眼”系統(tǒng)[N];人民鐵道;2012年
4 王海燕 記者 陳巖;我省通信網(wǎng)絡(luò)質(zhì)量全國(guó)領(lǐng)先[N];黑龍江日?qǐng)?bào);2004年
5 記者 王山林 通訊員 趙芳 侯功華;福建電網(wǎng)試運(yùn)行4G通信網(wǎng)絡(luò)[N];國(guó)家電網(wǎng)報(bào);2013年
6 耿巖 賽迪顧問(wèn)互聯(lián)網(wǎng)產(chǎn)業(yè)研究中心總經(jīng)理;“寬帶中國(guó)”激活通信網(wǎng)絡(luò)保護(hù)設(shè)備市場(chǎng)[N];通信產(chǎn)業(yè)報(bào);2014年
7 劉菊花;通信網(wǎng)絡(luò)安全管理辦法將出臺(tái)[N];大眾科技報(bào);2009年
8 上海大唐移動(dòng)通信設(shè)備有限公司高級(jí)經(jīng)理 鄭哲;移動(dòng)通信網(wǎng)絡(luò)優(yōu)化淺析[N];通信產(chǎn)業(yè)報(bào);2001年
9 記者 李薇;工信部擬出臺(tái)通信網(wǎng)絡(luò)安全管理辦法[N];北京商報(bào);2009年
10 楊志杰;通信網(wǎng)絡(luò)要分級(jí)防護(hù)[N];通信產(chǎn)業(yè)報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 虎大力;干擾場(chǎng)景下車(chē)輛移動(dòng)通信網(wǎng)絡(luò)性能分析及優(yōu)化設(shè)計(jì)[D];西南交通大學(xué);2017年
2 郝旭;ITER-PPEN電站自動(dòng)化系統(tǒng)IED設(shè)備工程配置和通信網(wǎng)絡(luò)性能分析[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
3 葉夏明;電力信息物理系統(tǒng)通信網(wǎng)絡(luò)性能分析及網(wǎng)絡(luò)安全評(píng)估[D];浙江大學(xué);2015年
4 李全剛;通信網(wǎng)絡(luò)中用戶(hù)行為分析與生成模型研究[D];電子科技大學(xué);2015年
5 胡雨佳;多天線(xiàn)選擇系統(tǒng)保密中斷概率研究[D];北京郵電大學(xué);2015年
6 周佳;多天線(xiàn)雙向中繼網(wǎng)絡(luò)傳輸性能研究[D];北京郵電大學(xué);2015年
7 張沉思;高效低復(fù)雜度的雙向放大轉(zhuǎn)發(fā)中繼傳輸技術(shù)研究[D];西安電子科技大學(xué);2015年
8 蘇玉萍;無(wú)線(xiàn)中繼通信系統(tǒng)的可達(dá)速率區(qū)域及中斷性能研究[D];西安電子科技大學(xué);2015年
9 倪藝洋;基于移動(dòng)中繼的端到端傳輸技術(shù)與性能研究[D];南京郵電大學(xué);2016年
10 何申;面向3G移動(dòng)通信網(wǎng)絡(luò)的安全框架研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 劉毅;某省移動(dòng)公司通信網(wǎng)絡(luò)優(yōu)化項(xiàng)目關(guān)鍵管理問(wèn)題及對(duì)策[D];山東大學(xué);2015年
2 王永華;變電站綜合自動(dòng)化系統(tǒng)的設(shè)計(jì)與工程實(shí)現(xiàn)[D];東北大學(xué);2012年
3 況凱旋;通信網(wǎng)絡(luò)的業(yè)務(wù)規(guī)劃及保護(hù)關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2014年
4 汪巍;移動(dòng)通信網(wǎng)絡(luò)質(zhì)量分析與呈現(xiàn)系統(tǒng)的研究與實(shí)現(xiàn)[D];華中科技大學(xué);2014年
5 傅德林;智能配用電通信網(wǎng)絡(luò)業(yè)務(wù)模型研究[D];華北電力大學(xué)(北京);2016年
6 盧航;基于IPv6的電力需求側(cè)通信網(wǎng)絡(luò)架構(gòu)研究[D];湖南大學(xué);2016年
7 徐楊;通信網(wǎng)絡(luò)工程項(xiàng)目質(zhì)量管理研究及在NGB項(xiàng)目中的應(yīng)用[D];上海交通大學(xué);2015年
8 彥慶鑫;電信綜合業(yè)務(wù)自動(dòng)撥測(cè)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];南昌大學(xué);2016年
9 朱家明;多飛行器通信網(wǎng)絡(luò)的抗毀性?xún)?yōu)化研究[D];南昌航空大學(xué);2017年
10 張小萌;面向戰(zhàn)地通信網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的抗毀性研究[D];湖北工業(yè)大學(xué);2017年
,本文編號(hào):1823020
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1823020.html