基于時間透鏡的超短光脈沖的研究
本文選題:時間透鏡 + 時頻轉換。 參考:《湖北師范大學》2017年碩士論文
【摘要】:對超短光脈沖信號的處理是當今學術界普遍關注的研究熱點,超短光脈沖廣泛應用于通信、檢測以及成像等方面。超短光脈沖的生成及其對超短光脈沖的處理極為有用。時間透鏡是一種新型的光信號處理設備,在光處理系統(tǒng)中有著極為重要的作用。時間透鏡既可以運用在超短光脈沖的信號產生方面,也可以對超短光脈沖信號起放大、縮小的作用,讓其在時域上面能更容易的被檢測和處理,降低了測量儀器的精度。基于時間透鏡的成像系統(tǒng)能對超短光脈沖信號實施高速的變換,也能夠產生超短光脈沖信號,在很多領域都能被有效利用。基于時間透鏡的傅里葉系統(tǒng)能夠將信號的時域直接轉換為頻域輸出,進行實時傅里葉變換,能夠用示波器等儀器直接觀察信號頻譜,同時該系統(tǒng)能夠在頻域的角度對信號進行濾波、調制和其他方面的應用,能夠更好的對信號展開深層次的研究。我們主要利用OptiSystem實驗平臺,對超短光脈沖進行了時頻轉換系統(tǒng)的仿真,模擬出了傅里葉變換系統(tǒng)和反傅里葉變換系統(tǒng)。利用時間透鏡對超短光脈沖濾波是目前很少探究的領域,利用傅里葉變換系統(tǒng)和反傅里葉變換系統(tǒng)在超短光脈沖的濾波方向進行了探究以及仿真。對基于時間透鏡的時頻轉換系統(tǒng)進行了理論分析,進一步的利用OptiSystem平臺對得到的結論進行了仿真,得到了很好的效果。介紹了一種實現(xiàn)超短光脈沖時域包絡的觀察方法,基于時間透鏡實現(xiàn)反傅里葉變換系統(tǒng),解決了觀察超短光脈沖的儀器精度限制,將超短光脈沖的時域信息轉換到頻域,頻域信息通過光譜儀,可以在光譜儀上得到原信號的時域信號,并且分析了系統(tǒng)的可靠性和誤差來源。本文利用時間透鏡的傅里葉系統(tǒng)和反傅里葉系統(tǒng)設計了一個超短光脈沖的濾波系統(tǒng),超短光信號經過傅里葉系統(tǒng)得到頻譜,在頻域上通過一個光開關進行濾波,將濾波之后的脈沖經過反傅里葉系統(tǒng)還原原來的信號達到濾波的作用,在OptiSystem平臺上對有高頻干擾信號的雙高斯信號進行濾波,在誤差范圍內較好的實現(xiàn)了濾波效果。
[Abstract]:The processing of ultrashort optical pulse signal is a hot topic in academic circles. Ultrashort optical pulse is widely used in communication, detection and imaging. The generation of ultrashort optical pulse and its application in the treatment of ultrashort optical pulse are very useful. Time lens is a new type of optical signal processing equipment, which plays an important role in optical processing system. Time lens can be used not only in signal generation of ultrashort optical pulse, but also in amplification and reduction of ultrashort optical pulse signal, which makes it easier to be detected and processed in time domain and reduces the precision of measuring instrument. The imaging system based on time lens can transform ultrashort optical pulse signal at high speed and generate ultrashort optical pulse signal which can be used effectively in many fields. The Fourier system based on time lens can directly transform the signal into frequency domain output, perform real time Fourier transform, and observe the signal spectrum directly with instruments such as oscilloscope. At the same time, the system can filter, modulate and other applications in the frequency domain angle, and can better carry out the deep research on the signal. In this paper, the time-frequency conversion system of ultrashort optical pulse is simulated on the OptiSystem platform, and the Fourier transform system and the inverse Fourier transform system are simulated. Using time lens to filter ultrashort optical pulse is a rare research field at present. Fourier transform system and inverse Fourier transform system are used to investigate and simulate the direction of ultrashort optical pulse filtering. The time-frequency conversion system based on time lens is analyzed theoretically, and the conclusion is simulated by using OptiSystem platform, and the result is very good. In this paper, a method to realize the time-domain envelope of ultrashort optical pulse is introduced. The inverse Fourier transform system based on time lens is realized, which solves the limit of instrument precision of observing ultrashort optical pulse, and converts the time-domain information of ultrashort optical pulse to frequency domain. The time-domain signal of the original signal can be obtained from the spectrometer through the frequency-domain information, and the reliability and error source of the system are analyzed. In this paper, a filter system of ultrashort optical pulse is designed by using Fourier system and inverse Fourier system of time lens. The spectrum of ultrashort optical signal is obtained by Fourier system and filtered by an optical switch in frequency domain. The filtered pulse is restored to the original signal by the inverse Fourier system to filter the double Gao Si signal with high frequency interference on the OptiSystem platform. The filtering effect is better in the error range.
【學位授予單位】:湖北師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN911.7
【相似文獻】
相關期刊論文 前10條
1 ;超短光脈沖波形和啁啾特性的測量[J];中國計量學院學報;2001年02期
2 翟華金;;超短光脈沖的測量[J];激光技術;1993年02期
3 廖柯;超短光脈沖技術的研究進展[J];半導體光電;2000年S1期
4 李慶行;余振新;;介質中超短光脈沖的自位相調制和光譜超增寬[J];激光技術;1989年04期
5 于虹,朱利;采用新型晶體測量超短光脈沖[J];東南大學學報;1997年01期
6 梁偉康;李培麗;薛菲;王莉莉;郭海莉;;超短光脈沖測量技術的研究進展[J];光通信技術;2014年02期
7 劉其沅;;實用的超短光脈沖發(fā)生器及其應用[J];光通信研究;1986年01期
8 林美榮,黃明雄,張包錚,陳文駒;超短光脈沖放大的研究[J];量子電子學;1992年01期
9 鐘山,伍劍,婁采云,高以智,周炳琨;增益開關半導體激光器超短光脈沖消啁啾研究[J];半導體學報;1997年10期
10 馬軍山;超短光脈沖的測量[J];激光與光電子學進展;2000年09期
相關會議論文 前2條
1 劉天夫;胡桂林;;生命科學中超短光脈沖的測量[A];第九屆全國光學測試學術討論會論文(摘要集)[C];2001年
2 王濤;趙林森;;超短光脈沖在光纖中的傳輸特性研究[A];2012年西部光子學學術會議論文摘要集[C];2012年
相關碩士學位論文 前6條
1 楊火祥;基于時間透鏡的超短光脈沖的研究[D];湖北師范大學;2017年
2 周楠;任意波形超短光脈沖發(fā)生器研究[D];北京交通大學;2011年
3 李淑青;超短光脈沖在光纖中的傳輸特性及相互作用[D];山西大學;2005年
4 王志東;光纖中調制不穩(wěn)定性產生高重復頻率超短光脈沖的數(shù)值分析[D];天津理工大學;2010年
5 梁偉康;基于高非線性光纖的XPM-FROG超短光脈沖測量系統(tǒng)[D];南京郵電大學;2014年
6 吳永超;超短光脈沖產生技術研究[D];天津大學;2010年
,本文編號:1815912
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1815912.html