基于PU塊劃分模式和DCT系數(shù)共生矩陣的HEVC視頻重壓縮檢測算法
本文選題:數(shù)字視頻取證 + HEVC/H.265 ; 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:隨著網(wǎng)絡(luò)應(yīng)用的普及和多媒體信息產(chǎn)業(yè)的快速發(fā)展,數(shù)字視頻通過互聯(lián)網(wǎng)和智能手機融入到人們的生活中,并成為司法證據(jù)的重要組成部分。數(shù)字視頻內(nèi)容真實性問題日益嚴(yán)峻,各種功能強大且操作簡單的多媒體編輯軟件使得人們能夠輕易地對圖像視頻進行惡意的編輯和修改,影響司法公正和社會安定,使得數(shù)字視頻真?zhèn)蔚蔫b別具有重要的實用價值和廣闊的發(fā)展前景。視頻篡改的過程必然要對視頻進行重壓縮,這使得視頻重壓縮檢測技術(shù)成為了視頻真實性取證的一個重要技術(shù)手段。HEVC作為最新一代的國際視頻編碼標(biāo)準(zhǔn),將廣泛地應(yīng)用于在高清、超高清視頻和流媒體服務(wù)領(lǐng)域。本文從HEVC視頻重壓縮引起的幀圖像內(nèi)容變化的角度出發(fā),提出了兩種視頻重壓縮檢測算法。1.針對不同比特率下HEVC視頻重壓縮檢測問題,提出了基于PU塊劃分模式的HEVC視頻重壓縮檢測算法。利用雙重壓縮HEVC視頻4×4PU塊的數(shù)目變化趨勢與單次壓縮視頻不一致的特性,統(tǒng)計分析視頻在單次壓縮和重壓縮下4×4PU塊的數(shù)目并做歸一化處理,提取出數(shù)目變化曲線,利用數(shù)目變化曲線中的凸起現(xiàn)象對視頻進行重壓縮檢測。實驗結(jié)果表明,該算法平均檢測率達(dá)到了 80%以上,能夠有效地對HEVC重壓縮視頻進行鑒別。在目前針對HEVC重壓縮檢測研究成果較少的情況下,該算法能夠針對HEVC特有的PU語法元素進行特征提取,實現(xiàn)對HEVC重壓縮視頻的檢測,進一步推動了視頻重壓縮取證算法的發(fā)展。2.為了進一步提高對HEVC重壓縮視頻的檢測率,在基于PU塊劃分模式檢測算法的基礎(chǔ)上,利用雙重壓縮HEVC視頻Ⅰ幀量化DCT系數(shù)與單次壓縮視頻不同的特性,通過共生矩陣來表征這種差異,提出了基于PU塊劃分模式和DCT系數(shù)共生矩陣的HEVC視頻重壓縮檢測算法。將HEVC視頻中Ⅰ幀預(yù)測單元PU(Prediction Unit)劃分類型的塊數(shù)目特征和量化DCT系數(shù)的共生矩陣特征結(jié)合構(gòu)建聯(lián)合特征,全面地反映重壓縮對HEVC視頻數(shù)據(jù)的影響。實驗結(jié)果表明,所提算法能在基于PU塊劃分模式檢測算法的基礎(chǔ)上大幅提高檢測率,有效地區(qū)分HEVC單次壓縮視頻和HEVC雙重壓縮視頻。
[Abstract]:With the popularity of network applications and the rapid development of multimedia information industry, digital video has been integrated into people's lives through the Internet and smart phones, and has become an important part of judicial evidence. The authenticity of digital video content is becoming more and more serious. All kinds of powerful and simple multimedia editing software make it easy for people to edit and modify image and video maliciously, which affects judicial justice and social stability. The identification of digital video authenticity has important practical value and broad development prospects. The process of video tampering is bound to recompress the video, which makes the video recompression detection technology become an important technical means of video authenticity forensics. HEVC as the latest generation of international video coding standards, Will be widely used in HD, HD video and streaming media services. From the point of view of the change of frame image content caused by HEVC video recompression, this paper proposes two video recompression detection algorithms. Aiming at the problem of HEVC video recompression detection with different bit rates, a new HEVC video recompression detection algorithm based on pu block partition mode is proposed. Taking advantage of the fact that the number of 4 脳 4PU blocks of a double compressed HEVC video is not consistent with that of a single compressed video, the number of 4 脳 4PU blocks in a single compression or a recompression is analyzed and normalized to extract the number variation curve. The recompression detection of video is carried out by using the convex phenomenon in the number changing curve. Experimental results show that the average detection rate of the algorithm is over 80%, which can effectively identify the HEVC recompressed video. Under the condition that the research results of HEVC recompression detection are few, the algorithm can extract the feature of pu syntax element of HEVC, realize the detection of HEVC recompressed video, and further promote the development of video recompression forensics algorithm. 2. In order to further improve the detection rate of HEVC recompressed video, based on the detection algorithm of pu block partition mode, the characteristics of quantization DCT coefficient of double compressed HEVC video frame I are different from that of single compressed video. This difference is represented by co-occurrence matrix, and a HEVC video recompression detection algorithm based on pu block partitioning mode and DCT coefficient co-occurrence matrix is proposed. The block number features of the division type of PU(Prediction unit and the co-occurrence matrix feature of quantized DCT coefficients in HEVC video are combined to form a joint feature, which reflects the effect of recompression on HEVC video data. Experimental results show that the proposed algorithm can greatly improve the detection rate on the basis of pu block partition pattern detection algorithm, and can effectively distinguish HEVC single compressed video from HEVC dual compressed video.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN919.81
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 張珍珍;侯建軍;李趙紅;郭勝;;基于MSSIM商一致性的視頻插幀和刪幀篡改檢測[J];北京郵電大學(xué)學(xué)報;2015年04期
2 黃美玲;王讓定;徐健;李倩;徐達(dá)文;;基于DCT系數(shù)統(tǒng)計特性的HEVC視頻雙壓縮檢測算法[J];光電子·激光;2015年04期
3 張旭;黎智輝;王鑫;彭思龍;許小京;王世君;;視頻取證技術(shù)研究進展[J];刑事技術(shù);2015年02期
4 杜振龍;焦麗鑫;李曉麗;郭延文;楊小健;;幀內(nèi)復(fù)制粘貼視頻偽造的盲檢測[J];中國圖象圖形學(xué)報;2014年06期
5 王琬;蔣興浩;孫錟鋒;;基于首位數(shù)字特征的雙重MPEG壓縮檢測算法[J];電子與信息學(xué)報;2012年12期
6 黃添強;吳鐵浩;袁秀娟;陳智文;;利用模式噪聲聚類分析的視頻非同源篡改檢測[J];計算機科學(xué)與探索;2011年10期
7 胡永健;劉t2貝;賀前華;;數(shù)字多媒體取證技術(shù)綜述[J];計算機應(yīng)用;2010年03期
8 王俊文;劉光杰;張湛;王執(zhí)銓;戴躍偉;;基于模式噪聲的數(shù)字視頻篡改取證[J];東南大學(xué)學(xué)報(自然科學(xué)版);2008年S2期
9 劉連山,李人厚,高琦;視頻數(shù)字水印技術(shù)綜述[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2005年03期
10 葉登攀,戴躍偉,王執(zhí)銓;視頻水印技術(shù)研究綜述[J];計算機工程與應(yīng)用;2005年01期
中國博士學(xué)位論文全文數(shù)據(jù)庫 前1條
1 徐俊瑜;數(shù)字視頻被動取證技術(shù)研究[D];天津大學(xué);2013年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前3條
1 郭勝;基于視頻特征QoMSSIM的幀間篡改取證算法研究[D];北京交通大學(xué);2016年
2 董瓊;基于統(tǒng)計特征的數(shù)字視頻被動取證技術(shù)研究[D];湖南大學(xué);2012年
3 劉潔;基于MPEG-2運動補償邊緣效應(yīng)的視頻篡改檢測研究[D];天津大學(xué);2010年
,本文編號:1787465
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1787465.html