誤碼條件下的IRA碼盲識別算法
發(fā)布時間:2018-04-21 12:06
本文選題:盲識別 + 對偶向量; 參考:《西安電子科技大學(xué)學(xué)報》2017年06期
【摘要】:針對誤碼條件下非規(guī)則重復(fù)累積碼校驗矩陣難以逆向重建以及大規(guī)模復(fù)雜交織難以恢復(fù)的問題,提出了一種基于對偶空間的校驗矩陣與交織映射關(guān)系識別算法.通過秩準(zhǔn)則法識別碼長和同步起始點,利用矩陣變換的方法來獲取對偶向量,由設(shè)定的決策門限從對偶向量中篩選出有效校驗向量,并根據(jù)非規(guī)則重復(fù)累積碼校驗矩陣的稀疏特性,由有效校驗向量稀疏化重建出校驗矩陣.最后根據(jù)非規(guī)則重復(fù)累積碼的編碼結(jié)構(gòu)特點識別出交織映射關(guān)系.仿真結(jié)果表明,該識別算法具有較低的計算復(fù)雜度,能夠在誤碼條件下盲估計出編碼參數(shù),實現(xiàn)非協(xié)作場合的非規(guī)則重復(fù)累積碼盲識別.
[Abstract]:Aiming at the problem that it is difficult to reconstruct irregularly repeated cumulant check matrix and to recover large scale complex interleaving under the condition of error code, an algorithm based on dual space is proposed to identify the relationship between check matrix and interleaved mapping. By using rank criterion method to identify the length of code and the starting point of synchronization, the dual vector is obtained by matrix transformation, and the effective check vector is screened out from the dual vector by the set decision threshold. According to the sparse characteristic of the irregular repeated cumulant code check matrix, the check matrix is reconstructed from the effective check vector sparsity. Finally, the interleaved mapping relationship is identified according to the coding structure of irregular repetitive cumulant codes. The simulation results show that the algorithm has lower computational complexity and can estimate the coding parameters blindly under the condition of error code.
【作者單位】: 西安電子科技大學(xué)通信工程學(xué)院;
【基金】:高等學(xué)校學(xué)科創(chuàng)新引智計劃(“111”計劃)資助項目(B08038)
【分類號】:TN911.22
,
本文編號:1782370
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1782370.html
最近更新
教材專著