低信噪比下直擴(kuò)信號(hào)盲檢測(cè)技術(shù)研究
本文選題:直擴(kuò)通信系統(tǒng) + 信號(hào)檢測(cè); 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著信息時(shí)代的來(lái)臨,人類日常生活以及在軍事行動(dòng)中對(duì)通信的依賴性越來(lái)越大。直擴(kuò)通信的抗干擾性非常好,并且信息不容易被截獲到,因此在如今得到了非常廣泛的應(yīng)用。在非協(xié)作通信中直擴(kuò)信號(hào)的盲檢測(cè)是直擴(kuò)信號(hào)參數(shù)估計(jì)和擴(kuò)頻序列盲估計(jì)的基礎(chǔ),因此直擴(kuò)信號(hào)的盲檢測(cè)受到了很大的重視。然而以往的很多檢測(cè)算法有的是半盲檢測(cè),有的檢測(cè)算法所需的信噪比遠(yuǎn)高于直擴(kuò)信號(hào)工作時(shí)信噪比,不能達(dá)到實(shí)際應(yīng)用的要求。本文在深入研究與分析了直擴(kuò)信號(hào)的基礎(chǔ)上,提出了兩種針對(duì)于低信噪比環(huán)境下的直擴(kuò)信號(hào)盲檢測(cè)算法。首先,本文在研究分析了時(shí)域相關(guān)檢測(cè)算法的基礎(chǔ)上改進(jìn)了基于預(yù)測(cè)的時(shí)域相關(guān)(Estimation-based Time-domain Sliding Correlating Accumulation,ETSCA)算法,該算法通過(guò)估計(jì)擴(kuò)頻碼與估計(jì)數(shù)據(jù)相互更新極大的抑制了帶內(nèi)噪聲。仿真分析表明該算法對(duì)擴(kuò)頻碼長(zhǎng)為31位的直擴(kuò)信號(hào)可以在信噪比為-15d B時(shí)檢測(cè)出直擴(kuò)信號(hào),并且隨著檢測(cè)使用的數(shù)據(jù)長(zhǎng)度的增加性能會(huì)進(jìn)一步提升。并且采用矢量信號(hào)源生成的直擴(kuò)信號(hào)對(duì)該算法進(jìn)行了驗(yàn)證,結(jié)果表明該算法檢測(cè)性能良好。其次,本文在研究了特征值分解算法后提出了針對(duì)中頻信號(hào)的基于自相關(guān)的矩陣分析(Autocorrelation-based Matrix Analysis,ACMA)算法。仿真結(jié)果表明在同等條件下該算法的檢測(cè)性能要比ETSCA算法提高2d B左右。通過(guò)理論推導(dǎo)了直擴(kuò)信號(hào)同步偏移量對(duì)ACMA算法性能的影響。該算法在同步情況下檢測(cè)性能最好,而在歸一化同步偏移量為1/2時(shí)性能最差,并且通過(guò)仿真驗(yàn)證了理論推導(dǎo)的結(jié)果。最后,把兩種檢測(cè)算法結(jié)合起來(lái)提出了基于估計(jì)的自相關(guān)矩陣分析算法(Estimation-based Autocorrelation Matrix Analysis,EACMA)。該算法解決了ACMA算法檢測(cè)性能隨著同步偏移量的變化而波動(dòng)的缺點(diǎn),提升了算法的檢測(cè)性能。該算法良好的性能是在提高了算法復(fù)雜度的基礎(chǔ)上實(shí)現(xiàn)的,針對(duì)該算法的高復(fù)雜度本文還提出了該算法的步進(jìn)快速搜索方案,該方案可以在犧牲很小檢測(cè)性能的情況下使檢測(cè)時(shí)間縮小到原有檢測(cè)時(shí)間的幾分之一,步長(zhǎng)與復(fù)雜度成線性關(guān)系,當(dāng)步長(zhǎng)增加時(shí),檢測(cè)所需要的時(shí)間降低,但檢測(cè)性能下降。
[Abstract]:With the advent of the information age, people depend more and more on communication in their daily life and military operations. Direct-spread-sequence communication (DSSS) is widely used because of its good anti-interference and the information is not easily intercepted. Blind detection of DSSS signals in non-cooperative communication is the basis of parameter estimation and blind estimation of spread spectrum sequences, so blind detection of DSSS signals is paid great attention to. However, some of the previous detection algorithms are semi-blind, and some of them require a higher SNR than the DSSS signal to noise ratio (SNR), which can not meet the requirements of practical applications. On the basis of deep research and analysis of DSSS signals, two blind detection algorithms for DSSS signals in low SNR environment are proposed in this paper. Firstly, based on the analysis of the time-domain correlation detection algorithm, this paper improves the prediction-based Time-domain Sliding Correlating acceptance algorithm, which greatly reduces the in-band noise by updating the spread spectrum code and the estimated data. The simulation results show that the proposed algorithm can detect the DSSS signal when the SNR is -15dB for the 31-bit DSSS signal, and the performance will be further improved with the increase of the data length used in the detection. The DSSS signal generated by the vector signal source is used to verify the algorithm, and the results show that the algorithm has good detection performance. Secondly, after studying the eigenvalue decomposition algorithm, an autocorrelation-based Matrix analysis algorithm for intermediate frequency signals is proposed. Simulation results show that the detection performance of this algorithm is about 2 dB higher than that of ETSCA algorithm under the same conditions. The influence of synchronous offset of DSSS signal on the performance of ACMA algorithm is deduced theoretically. The performance of the algorithm is the best in the case of synchronization, but the worst when the normalized synchronization offset is 1 / 2, and the theoretical results are verified by simulation. Finally, an estimation based Autocorrelation Matrix analysis algorithm based on estimation is proposed by combining the two detection algorithms. The algorithm solves the shortcoming that the detection performance of ACMA algorithm fluctuates with the change of synchronous offset, and improves the detection performance of the algorithm. The good performance of the algorithm is realized on the basis of increasing the complexity of the algorithm. In view of the high complexity of the algorithm, this paper also proposes a step by step fast search scheme for the algorithm. The proposed scheme can reduce the detection time to a fraction of the original detection time at the expense of very small detection performance. The step size is linearly related to the complexity. When the step size increases, the detection time will decrease, but the detection performance will decline.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN914.42
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 GUAN Mingxiang;WANG Le;;A Novel Recognition Method for Low SNR DSSS Signals Based on Four-Order Cumulant and Eigenvalue Analysis[J];Chinese Journal of Electronics;2015年03期
2 沈斌;王建新;;基于奇異值分解的直擴(kuò)信號(hào)偽碼序列及信息序列盲估計(jì)方法[J];電子與信息學(xué)報(bào);2014年09期
3 馬超;張立民;劉凱;;基于碼片延遲的多徑信道擴(kuò)頻序列盲估計(jì)[J];電子設(shè)計(jì)工程;2014年10期
4 沙志超;吳海斌;任嘯天;黃知濤;周一宇;;非合作直擴(kuò)信號(hào)檢測(cè)中的相關(guān)函數(shù)二階矩方法[J];系統(tǒng)工程與電子技術(shù);2013年08期
5 王曉燕;方世良;朱志峰;;一種基于自相關(guān)估計(jì)的水聲直擴(kuò)信號(hào)檢測(cè)方法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
6 董占奇;胡捍英;于宏毅;;基于延遲相乘-相關(guān)及譜分析的直擴(kuò)信號(hào)檢測(cè)與符號(hào)周期、碼片時(shí)寬估計(jì)分析[J];電子與信息學(xué)報(bào);2008年04期
7 張?zhí)祢U;周正中;鄺育軍;田增山;;低信噪比長(zhǎng)偽碼直擴(kuò)信號(hào)偽碼周期的估計(jì)方法[J];系統(tǒng)工程與電子技術(shù);2007年01期
8 韓高莉;田紅心;;基于高階累積量的低信噪比直擴(kuò)信號(hào)盲檢測(cè)的實(shí)現(xiàn)[J];空間電子技術(shù);2006年02期
9 張?zhí)祢U,周正中,郭宗祥;一種DS/SS信號(hào)PN碼序列估計(jì)的神經(jīng)網(wǎng)絡(luò)方法[J];信號(hào)處理;2001年06期
10 張建立;直擴(kuò)信號(hào)的檢測(cè)[J];無(wú)線電工程;1994年02期
相關(guān)博士學(xué)位論文 前3條
1 任嘯天;直擴(kuò)信號(hào)擴(kuò)頻序列盲估計(jì)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
2 趙知?jiǎng)?統(tǒng)計(jì)通信信號(hào)處理技術(shù)研究[D];西安電子科技大學(xué);2009年
3 閆統(tǒng)江;偽隨機(jī)序列的構(gòu)造及其性質(zhì)研究[D];西安電子科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前6條
1 王碧雯;低截獲直擴(kuò)信號(hào)檢測(cè)方法研究[D];電子科技大學(xué);2016年
2 許彬;非協(xié)作信號(hào)的參數(shù)及PN序列的盲估計(jì)[D];哈爾濱工業(yè)大學(xué);2015年
3 李洪源;直擴(kuò)信號(hào)擴(kuò)頻碼序列盲估計(jì)算法研究[D];哈爾濱工程大學(xué);2012年
4 趙曉艷;直接序列擴(kuò)頻信號(hào)的盲檢測(cè)和參數(shù)估計(jì)方法[D];北京郵電大學(xué);2008年
5 陳楚楚;非協(xié)作情況下直接擴(kuò)頻信號(hào)擴(kuò)頻碼盲估計(jì)研究[D];浙江大學(xué);2006年
6 孔祥苓;直接序列擴(kuò)頻信號(hào)的檢測(cè)及參數(shù)估計(jì)技術(shù)研究[D];電子科技大學(xué);2005年
,本文編號(hào):1780070
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1780070.html