毫米波主動探測系統(tǒng)的信號處理算法及實現(xiàn)
本文選題:毫米波 + LFMCW�。� 參考:《南京理工大學(xué)》2017年碩士論文
【摘要】:毫米波雷達(dá)在近程測距方面有著廣泛的應(yīng)用,高效的測距算法和穩(wěn)定的硬件電路是實現(xiàn)高精度測距的重要保障。本文以3mm主動探測系統(tǒng)為研究背景,圍繞主動雷達(dá)測距的高精度算法和系統(tǒng)硬件電路設(shè)計進行了深入研究。按照實際應(yīng)用需求,構(gòu)建了一種對信號進行處理的系統(tǒng),主要工作如下:1、介紹了 LFMCW雷達(dá)主動探測的基本原理和實現(xiàn)方案,給出了系統(tǒng)的結(jié)構(gòu)模型,建立了差頻信號模型并進行了相關(guān)參數(shù)分析。2、利用比值法測距算法簡單、精度高、易實現(xiàn)的特點,首先分析了 Rife算法和幅相聯(lián)合內(nèi)插算法(CAPI)的性能,提出了 Rife和幅相聯(lián)合內(nèi)插結(jié)合算法(R_CAPI);其次剖析了比值法其他兩種常用算法Jacobsen和Quinn算法的性能,提出了基于J-Quinn的頻率估計算法。兩種改進算法均提升了差頻信號頻率估計性能。3、針對FFT變換存在柵欄效應(yīng)、頻譜泄露和分辨率不高的缺陷,以及目前一些算法在多頻率估計方面的不足,本文提出將MVDR模型的現(xiàn)代譜估計理論引入到LFMCW雷達(dá)測距中。在傳統(tǒng)MVDR譜估計方法基礎(chǔ)上進行了改進,提出自適應(yīng)的最速下降頻率估計算法(AFEA-SD),此方法中所使用的依托迭代理論的譜峰搜索區(qū)別于通常的搜索方法,結(jié)果表明,此算法可以有效克服FFT變換的固有缺陷,并具有分辨率高、估計精度高、計算量小和可用于多頻率估計的優(yōu)勢。4、結(jié)合項目需要,以FPGA的XC3S50為核心器件,完成了調(diào)制信號產(chǎn)生、差頻信號采樣、差頻信號處理三個部分的硬件電路設(shè)計與實現(xiàn),重點包括電源產(chǎn)生、時鐘控制和仿真JTAG等輔助模塊電路設(shè)計,以及數(shù)模轉(zhuǎn)換、電壓比較、差頻信號采樣等測距模塊電路設(shè)計。同時,給出了整體的系統(tǒng)原理圖設(shè)計和PCB實物圖。5、對系統(tǒng)的軟、硬件進行聯(lián)調(diào)和戶外模擬實驗,從而驗證了系統(tǒng)的可行性,檢驗了各算法在雷達(dá)測距中的性能和硬件電路設(shè)計的可靠性。
[Abstract]:Millimeter-wave radar is widely used in short-range ranging. Efficient ranging algorithm and stable hardware circuit are the important guarantee to achieve high-precision ranging.Based on the 3mm active detection system, the high precision algorithm of active radar ranging and the hardware circuit design of the system are studied in this paper.According to the practical application requirements, a signal processing system is constructed. The main work is as follows: 1. The basic principle and implementation scheme of LFMCW radar active detection are introduced, and the structure model of the system is given.The differential frequency signal model is established and the correlation parameters are analyzed. The ratio method is used to measure the distance, which is simple, accurate and easy to realize. Firstly, the performance of the Rife algorithm and the amplitude-phase interpolation algorithm are analyzed.In this paper, the Rife and amplitude-phase combined interpolation algorithms are proposed, and the performance of the other two common algorithms, Jacobsen and Quinn, are analyzed, and the frequency estimation algorithm based on J-Quinn is proposed.The two improved algorithms both improve the performance of frequency estimation of differential frequency signals. 3. Aiming at the defects of FFT transform, such as fence effect, spectrum leakage and low resolution, and the shortcomings of some current algorithms in multi-frequency estimation, the two improved algorithms improve the performance of frequency estimation of differential frequency signals.In this paper, the modern spectrum estimation theory of MVDR model is introduced into LFMCW radar ranging.Based on the improvement of the traditional MVDR spectral estimation method, an adaptive algorithm for estimating the steepest descent frequency is proposed. The spectral peak search based on the iterative theory is different from the usual search method in this method. The results show that,This algorithm can effectively overcome the inherent defects of FFT transform, and has the advantages of high resolution, high estimation accuracy, small computational complexity and the advantage of multi-frequency estimation. Combined with the project needs, the modulation signal is generated using FPGA's XC3S50 as the core device.The hardware circuit design and implementation of the three parts of differential frequency signal sampling and differential frequency signal processing include power generation, clock control and simulation JTAG, digital to analog conversion, voltage comparison, etc.Circuit design of ranging module such as differential frequency signal sampling.At the same time, the design of the whole system schematic diagram and the PCB physical diagram .5 are given. The software and hardware of the system are combined with the outdoor simulation experiment, which verifies the feasibility of the system.The performance of each algorithm in radar ranging and the reliability of hardware circuit design are tested.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN957.51
【參考文獻】
相關(guān)期刊論文 前10條
1 高志峰;彭喜元;彭宇;;基于迭代更新策略的快速高精度頻率估計方法[J];振動與沖擊;2015年14期
2 沈艷林;涂亞慶;劉鵬;陳鵬;;非整周期采樣信號頻率估計的相頻匹配方法[J];儀器儀表學(xué)報;2015年06期
3 朱愷;秦軼煒;許建中;萬夕干;陳煜;;四種提高FMCW測距精度的方案及性能分析[J];無線電工程;2015年01期
4 李翠翠;;一種可控穩(wěn)壓電源的設(shè)計[J];電子技術(shù)與軟件工程;2014年05期
5 翟盛華;;一種高精度的頻率估計算法研究[J];空間電子技術(shù);2014年01期
6 尤國紅;邱天爽;夏楠;宋愛民;王兆峰;;基于均勻圓陣的擴展循環(huán)MUSIC算法[J];通信學(xué)報;2014年02期
7 鄧澤懷;劉波波;李彥良;;常見的功率譜估計方法及其Matlab仿真[J];電子科技;2014年02期
8 詹啟東;涂亞慶;;基于Jacobsen法的LFMCW雷達(dá)測距算法[J];后勤工程學(xué)院學(xué)報;2014年01期
9 侯盼衛(wèi);楊錄;;基于自相關(guān)檢測法和能量重心法的正弦信號頻率估計算法[J];科學(xué)技術(shù)與工程;2014年03期
10 劉盎然;;線性方程組的迭代和最速下降法[J];赤峰學(xué)院學(xué)報(自然科學(xué)版);2014年02期
,本文編號:1745689
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1745689.html