超密集異構(gòu)網(wǎng)絡(luò)中無線資源管理關(guān)鍵問題的研究
本文選題:Small + cell ; 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:當(dāng)今的世界處在無處不在的大連接時(shí)代,下一代移動(dòng)通信網(wǎng)絡(luò)(5G)的容量和覆蓋范圍將不斷增加,以支持不斷增加的數(shù)據(jù)流量、終端設(shè)備,提供高可靠性的無縫連接和高速率的數(shù)據(jù)傳輸。為了滿足5G的容量和覆蓋需求,超密集網(wǎng)絡(luò)(Ultra Dense Network,UDN)是必不可少的一項(xiàng)關(guān)鍵技術(shù)。超密集網(wǎng)絡(luò)的前身是異構(gòu) Small cell 網(wǎng)絡(luò)(Heterogeneous Small cell Network),Small cell 網(wǎng)絡(luò)節(jié)點(diǎn)具有發(fā)射功率低,部署靈活,以及易于配置和運(yùn)營成本低等優(yōu)點(diǎn)。但UDN部署帶來容量和覆蓋提升的同時(shí),也給無線資源管理工作帶來了挑戰(zhàn)。例如用戶的小區(qū)選擇問題,小區(qū)間干擾嚴(yán)重問題,Small cell系統(tǒng)性能如何進(jìn)一步提升問題。5G還提出"綠色通信"的要求,所以超密集網(wǎng)絡(luò)部署需要降低能耗,提高頻譜效率。本論文針對(duì)超密集異構(gòu)Small cell網(wǎng)絡(luò)的用戶小區(qū)選擇問題、能量效率和頻譜效率優(yōu)化問題進(jìn)行了研究。首先針對(duì)Femtocell小區(qū)選擇問題,提出了基于非合作買賣博弈小區(qū)選擇的方法;其次,針對(duì)Picocell系統(tǒng)能效-譜效聯(lián)合優(yōu)化問題,提出了使用NSGA-2算法求解該多目標(biāo)問題,進(jìn)行無線資源分配的方案。本論文的主要研究內(nèi)容以及創(chuàng)新點(diǎn)如下:1.本論文提出了基于非合作買賣博弈的分布式小區(qū)選擇方案。以用戶為買方,以Femtocell為賣方,建立了非合作買賣模型。根據(jù)用戶接入前后的信干噪比設(shè)計(jì)了 Femtocell的獎(jiǎng)勵(lì)函數(shù),又根據(jù)獎(jiǎng)勵(lì)函數(shù)為買賣雙方設(shè)計(jì)了效用函數(shù)。為了使用戶在獲得速率和付出代價(jià)之間做一個(gè)權(quán)衡,又為用戶的效用函數(shù)設(shè)置了權(quán)重因子。為了解決Femtocell快速完成對(duì)待接入用戶的報(bào)價(jià)問題,提出了一種價(jià)格更新算法。該博弈方案是基于信干噪比的,保障用戶獲得更好的服務(wù)質(zhì)量,還為Femtocell增加收益,仿真結(jié)果驗(yàn)證了該算法的良好性能。2.本論文將問題建模為一個(gè)Picocell系統(tǒng)能效-譜效多目標(biāo)優(yōu)化問題,而不是傳統(tǒng)的只限于單一的優(yōu)化容量、譜效或能效的單目標(biāo)問題。該優(yōu)化問題為Marco cell用戶設(shè)置了最低的資源塊信干噪比門限,又為Picocell用戶設(shè)置了最低的傳輸速率,同時(shí)保障了 Marco cell用戶和Picocell用戶的服務(wù)質(zhì)量(QoS)。仿真結(jié)果表明了這兩個(gè)約束條件對(duì)用戶QoS的保障。3.不同于傳統(tǒng)的權(quán)重系數(shù)法,本論文使用了 NSGA-2算法解決能效-譜效多目標(biāo)優(yōu)化問題。NSGA-2算法同時(shí)進(jìn)行資源塊和發(fā)射功率分配,避免了一般分步求解無法保證最優(yōu)解的問題。仿真結(jié)果表明,本論文的NSGA-2算法性能優(yōu)于權(quán)重系數(shù)法。
[Abstract]:Today's world is in the ubiquitous era of large connectivity, and the capacity and coverage of the next generation mobile communication network (5G) will continue to increase to support increasing data traffic, terminal equipment,Provide high reliability seamless connection and high rate data transmission.In order to meet the requirement of 5G capacity and coverage, Ultra Dense Network (UDN) is an essential key technology.The precursor of ultra-dense network is heterogeneous Small cell network small cell network node, which has the advantages of low transmit power, flexible deployment, easy configuration and low operating cost.However, while UDN deployment brings about higher capacity and coverage, it also brings challenges to wireless resource management.For example, the problem of cell selection for users, the serious problem of intercellular interference, and how to further improve the performance of small cell system. 5G also puts forward the requirement of "green communication". Therefore, the deployment of super-dense networks needs to reduce energy consumption and improve spectral efficiency.In this paper, the problem of cell selection, energy efficiency and spectrum efficiency optimization for ultra-dense heterogeneous Small cell networks is studied.For the problem of Femtocell cell selection, a method of cell selection based on non-cooperative buying and selling game is proposed. Secondly, aiming at the problem of joint optimization of energy efficiency and spectrum effect in Picocell system, a NSGA-2 algorithm is proposed to solve the multi-objective problem.A scheme for allocating wireless resources.The main contents and innovations of this thesis are as follows: 1.In this paper, a distributed cell selection scheme based on non-cooperative trading game is proposed.Taking the user as the buyer and Femtocell as the seller, the non-cooperative trading model is established.According to the signal-to-noise ratio before and after the user access, the reward function of Femtocell is designed, and the utility function is designed for both the buyer and the seller according to the reward function.In order to make the user make a trade-off between the acquisition rate and the cost, a weighting factor is set for the utility function of the user.In order to solve the problem of quick completion of Femtocell bidding for access users, a price updating algorithm is proposed.The game scheme is based on signal-to-noise ratio to ensure better quality of service for users and increase revenue for Femtocell. The simulation results show that the algorithm has good performance. 2.In this paper, the problem is modeled as a multi-objective optimization problem of energy efficiency and spectral efficiency in Picocell systems, rather than a single objective problem which is limited to a single optimization capacity, spectral effect or energy efficiency.The optimization problem sets the minimum resource block signal-to-noise ratio threshold for Marco cell users, sets the minimum transmission rate for Picocell users, and guarantees the QoS of Marco cell users and Picocell users.The simulation results show that these two constraints guarantee the user QoS. 3. 3.Different from the traditional weight coefficient method, the NSGA-2 algorithm is used to solve the energy-efficiency and spectral efficiency multi-objective optimization problem. NSGA-2 algorithm is used to allocate the resource block and transmit power at the same time, thus avoiding the problem that the general step-by-step solution can not guarantee the optimal solution.The simulation results show that the performance of the NSGA-2 algorithm is better than that of the weight coefficient method.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 賈亞男;岳殿武;;認(rèn)知小蜂窩網(wǎng)絡(luò)中基于能效的下行資源分配算法[J];通信學(xué)報(bào);2016年04期
2 李峻洋;曹亙;;Small Cell網(wǎng)絡(luò)管理技術(shù)研究[J];郵電設(shè)計(jì)技術(shù);2015年09期
3 田忠驛;;5G關(guān)鍵技術(shù)淺談[J];移動(dòng)通信;2015年13期
4 本刊訊;;IMT-2020(5G)推進(jìn)組發(fā)布5G技術(shù)白皮書[J];中國無線電;2015年05期
5 劉旭;李俠宇;朱浩;;5G中的SDN/NFV和云計(jì)算[J];電信網(wǎng)技術(shù);2015年05期
6 閆麗生;;5G系統(tǒng)技術(shù)標(biāo)準(zhǔn)與進(jìn)展[J];電信工程技術(shù)與標(biāo)準(zhǔn)化;2015年04期
7 李世超;;5G關(guān)鍵技術(shù)之NOMA介紹[J];電子制作;2015年04期
8 聞庫;文扁;;全球4G日趨成熟 5G期待花開[J];世界電信;2014年12期
9 陳賡;夏瑋瑋;沈連豐;;基于傳輸速率自適應(yīng)的動(dòng)態(tài)帶寬分配算法[J];通信學(xué)報(bào);2014年05期
10 李鴻鑫;李銀紅;李智歡;;多目標(biāo)進(jìn)化算法求解無功優(yōu)化問題的比較與評(píng)估[J];電網(wǎng)技術(shù);2013年06期
,本文編號(hào):1742329
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1742329.html