天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

Massive MIMO中矩陣SVD分解算法研究

發(fā)布時間:2018-04-02 21:47

  本文選題:Massive 切入點:MIMO 出處:《電子科技大學(xué)》2016年碩士論文


【摘要】:隨著無線通信技術(shù)的不斷發(fā)展,傳統(tǒng)的MIMO技術(shù)已經(jīng)無法滿足日益增加的數(shù)據(jù)需求。Massive MIMO作為5G標(biāo)準(zhǔn)的備選方案之一,通過增加發(fā)射和接收天線數(shù)目,可以極大的提高信道容量,并且可以相對方便的從現(xiàn)有的MIMO系統(tǒng)下進(jìn)行平滑過渡。同時,大規(guī)模的天線陣列增加了信道的維度,對于信道矩陣相關(guān)的算法,比如預(yù)編碼、信道檢測和信道估計等,實現(xiàn)復(fù)雜度上也會迅速上升。SVD作為矩陣分解的重要手段,在這些算法上均有著廣泛的應(yīng)用,如何在大規(guī)模矩陣下實現(xiàn)低復(fù)雜度的SVD算法,成為亟待解決的問題。本文首先介紹了Massive MIMO的特點和存在的一些技術(shù)挑戰(zhàn),以及SVD在MIMO下的應(yīng)用。接著對常見的SVD分解算法做了介紹,對于Golub-Kahan算法,主要研究了塊對角化和QR迭代過程。對于Jacobi旋轉(zhuǎn)算法,分析了實數(shù)域雙邊Jacobi變換和對應(yīng)的脈動執(zhí)行過程。對于Hestenes-Jacobi算法,主要介紹了兩種重要的數(shù)據(jù)計算順序。這些算法都求解了矩陣的完整SVD,在大規(guī)模矩陣中擁有較高復(fù)雜度。在MIMO預(yù)編碼系統(tǒng)中只需要較大奇異值對應(yīng)的奇異向量。本文提出了一種基于Hestenes-Jacobi的局部SVD分解方法。該算法收斂后只得到矩陣的部分奇異值和對應(yīng)的奇異向量,不需要求解整個SVD,在一定程度上減少了運算量,但是同時會影響收斂性能。通過結(jié)合局部SVD和完整SVD的各自優(yōu)點,本文對該算法作了進(jìn)一步改進(jìn),使得收斂性能得到了極大的改善。另外,本文研究了一種基于格拉斯曼流形的梯度跟蹤算法,并且對其性能做了仿真驗證。該算法將最優(yōu)化問題引入到流形中,同時利用了常見場景中時變信道緩慢連續(xù)變化的特點,實現(xiàn)了奇異向量實時跟蹤信道變化,降低了SVD復(fù)雜度。最后對于提出的局部SVD分解方法,本文設(shè)計了VLSI硬件架構(gòu)和FPGA實現(xiàn),同時通過比特量化分析,提高了資源利用率。本文設(shè)計的架構(gòu)主要包括控制器、數(shù)據(jù)緩沖區(qū)、數(shù)據(jù)總線、存儲器、處理器和連接器,利用CORDIC核進(jìn)行角度計算和向量旋轉(zhuǎn)。該架構(gòu)可以滿足任意m×n(max(m,n)≤32)矩陣、所需奇異值個數(shù)為2的的局部SVD分解,并且具有優(yōu)秀的擴展性,可以很容易地增加矩陣維度以及奇異值個數(shù)。
[Abstract]:With the continuous development of wireless communication technology, the traditional MIMO technology can no longer meet the increasing data demand. Massive MIMO as one of the 5G standard options, by increasing the number of transmitting and receiving antennas, can greatly improve the channel capacity.And it is relatively convenient to smooth the transition from the existing MIMO system.At the same time, the large-scale antenna array increases the channel dimension. For the algorithms related to channel matrix, such as precoding, channel detection and channel estimation, the implementation complexity of SVD will rise rapidly as an important means of matrix decomposition.It is widely used in these algorithms. How to implement the low complexity SVD algorithm under the large-scale matrix has become an urgent problem to be solved.This paper first introduces the characteristics and some technical challenges of Massive MIMO, and the application of SVD in MIMO.Then the common SVD decomposition algorithm is introduced. For the Golub-Kahan algorithm, block diagonalization and QR iteration are mainly studied.For the Jacobi rotation algorithm, the two-sided Jacobi transform in real number domain and the corresponding pulsation execution process are analyzed.For Hestenes-Jacobi algorithm, two kinds of important data order are introduced.These algorithms solve the complete SVD of the matrix, and have high complexity in the large-scale matrix.In MIMO precoding systems, only singular vectors corresponding to large singular values are required.In this paper, a local SVD decomposition method based on Hestenes-Jacobi is proposed.After the algorithm converges, only the partial singular values of the matrix and the corresponding singular vectors are obtained. It does not need to solve the entire SVD, which reduces the computational complexity to a certain extent, but it will affect the convergence performance at the same time.By combining the respective advantages of local SVD and complete SVD, the algorithm is further improved in this paper, and the convergence performance is greatly improved.In addition, a gradient tracking algorithm based on Glassmann manifold is studied, and its performance is verified by simulation.The algorithm introduces the optimization problem into the manifold, and makes use of the slow and continuous variation of time-varying channels in common scenarios. It realizes the real-time tracking of channel changes by singular vectors and reduces the complexity of SVD.Finally, for the proposed local SVD decomposition method, this paper designs the VLSI hardware architecture and FPGA implementation, and improves the resource utilization rate by bit quantization analysis.The architecture of this paper mainly includes controller, data buffer, data bus, memory, processor and connector. Angle calculation and vector rotation are carried out by using CORDIC core.This scheme can satisfy the local SVD decomposition of arbitrary m 脳 nn maxm n) 鈮,

本文編號:1702238

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1702238.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9e7ea***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲乱码av中文一区二区三区| 日本男人女人干逼视频| 麻豆视传媒短视频在线看| 麻豆蜜桃星空传媒在线观看| 黄色片一区二区三区高清| 日本加勒比在线观看一区| 亚洲午夜精品视频观看| 国产精品国产亚洲看不卡| 色偷偷亚洲女人天堂观看| 中文字字幕在线中文乱码二区| 亚洲最新的黄色录像在线| 久久香蕉综合网精品视频| 在线中文字幕亚洲欧美一区 | 国产免费无遮挡精品视频| 日韩性生活视频免费在线观看 | 又黄又色又爽又免费的视频| 亚洲男女性生活免费视频| 久久老熟女一区二区三区福利 | 精品国产成人av一区二区三区| 伊人久久五月天综合网| 精品一区二区三区三级视频| 亚洲人午夜精品射精日韩| 国产成人精品一区在线观看| 久久热九九这里只有精品| 日本和亚洲的香蕉视频| 国产内射在线激情一区| 久久综合日韩精品免费观看 | 日韩欧美综合中文字幕 | 欧美日韩三区在线观看| 精品精品国产自在久久高清| 深夜视频在线观看免费你懂| 亚洲熟女熟妇乱色一区| 国产熟女高清一区二区| 国产在线不卡中文字幕| 精品香蕉一区二区在线| 亚洲一区二区三区av高清| 视频一区日韩经典中文字幕| 欧美胖熟妇一区二区三区| 老司机这里只有精品视频| 精品人妻一区二区三区在线看| 日木乱偷人妻中文字幕在线|