線性分組碼參數(shù)的盲識別算法研究
本文選題:信道編碼技術(shù) 切入點:線性分組碼 出處:《河北大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在數(shù)字通信系統(tǒng)中,為了抗擊信息在傳輸過程中受到的影響和干擾,提高信息傳輸?shù)目煽啃?信道編碼技術(shù)得到迅速發(fā)展。由于信道編碼技術(shù)應(yīng)用范圍日益增大,信道編碼盲識別技術(shù)應(yīng)運而生。其目的是在僅有少量甚至沒有任何先驗信息的前提下識別出截獲碼流的編碼體制和相關(guān)參數(shù),從而恢復(fù)出原始信息序列。它在信息對抗、通信偵測以及智能通信等領(lǐng)域具有重要的研究價值。本文重點研究了二進制線性分組碼參數(shù)的全盲識別問題,論文的主要工作如下:(1)介紹了線性分組碼的理論知識、盲識別的數(shù)學(xué)模型和識別參數(shù),為后面章節(jié)線性分組碼的全盲識別算法研究奠定了基礎(chǔ),并指出線性分組碼是本文的研究對象。(2)針對線性分組碼參數(shù)盲識別容錯性能差、復(fù)雜度高和半盲識別的問題,提出了一種基于特征融合的線性分組碼全盲識別算法。首先根據(jù)實際序列與隨機序列碼重分布概率間較大的差異性,研究了一種運用碼重標(biāo)準(zhǔn)差率差值、碼重信息熵分別同時識別碼長和起始點的算法;然后比較這兩種特征參數(shù)識別效果又進一步改進,提出了一種新的融合特征參數(shù)來同時識別碼長和起始點的算法;最后通過建立矩陣進行模二化簡求解生成矩陣,完成線性分組碼參數(shù)的全盲識別。通過理論分析和仿真驗證,該算法簡單易行且復(fù)雜度低,在誤碼率為0.025的條件下對中短碼的全盲識別率高達90%,誤碼率為0.005的條件下對中長碼的全盲識別率達到80%。(3)針對高誤碼率條件下高碼率循環(huán)碼參數(shù)的全盲識別問題,提出了一種基于最大公因式階數(shù)相異度的循環(huán)碼全盲識別算法。首先根據(jù)循環(huán)移位前后碼字的最大公約式階數(shù),利用實際序列與隨機序列階數(shù)分布概率間的差異性,提出了一種基于數(shù)據(jù)挖掘中相異性度量函數(shù)同時識別起始點和碼長的算法;然后根據(jù)循環(huán)碼特性,計算階數(shù)分布差值來識別生成多項式,實現(xiàn)了循環(huán)碼參數(shù)的全盲識別。該算法簡單易行且容錯性較強,在誤碼率為0.013的條件下對中長碼的全盲識別效果較好。
[Abstract]:In digital communication system, in order to resist the influence and interference of information transmission and improve the reliability of information transmission, channel coding technology has been developed rapidly. The blind identification technique of channel coding arises at the historic moment. Its purpose is to recognize the coding system and related parameters of the intercepted bitstream without even any prior information, so as to recover the original information sequence. Communication detection and intelligent communication have important research value. This paper focuses on the whole blind identification of binary linear block code parameters. The main work of this paper is as follows: 1) the theoretical knowledge of linear block code is introduced. The mathematical model and identification parameters of blind block code are the foundation of the whole blind recognition algorithm of linear block code in the following chapters. It is pointed out that linear block code is the research object of this paper. (2) for the parameter blind recognition of linear block code, the fault-tolerant performance of linear block code is poor. In order to solve the problem of high complexity and semi-blind recognition, this paper proposes a full blind recognition algorithm for linear block codes based on feature fusion. Firstly, according to the large differences between the distribution probability of code weight distribution between real sequences and random sequences, In this paper, an algorithm using the difference of code weight standard deviation rate and the code weight information entropy to identify the code length and the starting point respectively is studied, and the recognition effect of these two characteristic parameters is further improved. This paper presents a new algorithm to identify the length of code and the starting point at the same time by combining the characteristic parameters. Finally, by establishing the matrix to solve the generation matrix by module reduction, the full blind identification of the parameters of the linear block codes is accomplished, which is verified by theoretical analysis and simulation. The algorithm is simple and easy to implement and has low complexity. Under the condition that the BER is 0.025, the full blind recognition rate of medium and short codes is as high as 90 and that of medium and long codes is up to 80 and 80 under the condition of BER 0.005.) for the problem of full blind recognition of cyclic code parameters at high bit error rate, In this paper, a full blind recognition algorithm for cyclic codes based on the order dissimilarity of the largest common factor is proposed. Firstly, according to the maximum convention order of the code word before and after cyclic shift, the difference between the distribution probability of the order of the real sequence and the random sequence is used. In this paper, an algorithm based on the heterogeneity measure function in data mining is proposed to identify both the starting point and code length, and then, according to the characteristics of cyclic code, the order distribution difference is calculated to identify the generating polynomial. The algorithm is simple and fault-tolerant, and has a good effect on the full blind recognition of medium and long code under the condition of error rate of 0.013.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN911.22
【相似文獻】
相關(guān)期刊論文 前10條
1 胡康秀;王兵賢;;線性分組碼中標(biāo)準(zhǔn)陣列的進一步改進[J];重慶科技學(xué)院學(xué)報(自然科學(xué)版);2007年01期
2 謝振飛;周建欽;;線性分組碼網(wǎng)格圖狀態(tài)復(fù)雜度研究[J];安徽工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2008年03期
3 黃炳;周濤林;劉旭;;線性分組碼在糾錯編解碼的應(yīng)用[J];萍鄉(xiāng)高等專科學(xué)校學(xué)報;2010年06期
4 楊曉煒;甘露;;基于Walsh-Hadamard變換的線性分組碼參數(shù)盲估計算法[J];電子與信息學(xué)報;2012年07期
5 底強;蘇彥兵;;二進制線性分組碼盲識別問題研究[J];信息安全與通信保密;2012年08期
6 陳金杰;楊俊安;;一種對線性分組碼編碼參數(shù)的盲識別方法[J];電路與系統(tǒng)學(xué)報;2013年02期
7 陳金杰;計同鐘;楊俊安;;高誤碼條件下線性分組碼的盲識別[J];應(yīng)用科學(xué)學(xué)報;2013年05期
8 顧秋心;多值邏輯的線性分組碼糾錯[J];電子學(xué)報;1986年05期
9 馬建峰,王育民;兩類新的線性分組碼的譯碼[J];電子學(xué)報;1996年10期
10 馬建峰,王育民;一類三元線性分組碼的譯碼[J];通信學(xué)報;1996年06期
相關(guān)會議論文 前2條
1 李亞靜;陳衛(wèi)紅;;類數(shù)為1的二次域上線性分組碼的構(gòu)造[A];2006通信理論與技術(shù)新進展——第十一屆全國青年通信學(xué)術(shù)會議論文集[C];2006年
2 吉華芳;畢光國;張在琛;;LDPC碼及其與Turbo碼的比較[A];第九屆全國青年通信學(xué)術(shù)會議論文集[C];2004年
相關(guān)碩士學(xué)位論文 前10條
1 佟婧麗;線性分組碼的盲識別技術(shù)研究[D];河北大學(xué);2015年
2 張世會;線性分組碼及交織參數(shù)盲識別研究[D];重慶郵電大學(xué);2016年
3 賈層娟;線性分組碼參數(shù)的盲識別算法研究[D];河北大學(xué);2017年
4 喬國壘;線性分組碼的最大似然譯碼研究[D];南京理工大學(xué);2009年
5 劉銘;線性分組碼中的交疊編碼迭代譯碼技術(shù)研究[D];電子科技大學(xué);2008年
6 鄭瑞瑞;分組糾錯編碼盲識別的實現(xiàn)技術(shù)研究[D];杭州電子科技大學(xué);2013年
7 黃甬鋼;環(huán)上線性分組碼基于Lee度量譯碼的研究[D];解放軍信息工程大學(xué);2006年
8 黃煒;準(zhǔn)循環(huán)LDPC碼的構(gòu)造及編解碼方法研究[D];復(fù)旦大學(xué);2008年
9 楊曉煒;代數(shù)編碼的參數(shù)盲估計研究[D];電子科技大學(xué);2013年
10 袁峗;群變換構(gòu)成的多種BCH糾錯碼的研究和基于FPGA的實現(xiàn)[D];南京師范大學(xué);2007年
,本文編號:1610736
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1610736.html