基于DBSCAN子空間匹配的蜂窩網(wǎng)室內(nèi)指紋定位算法
發(fā)布時間:2018-03-02 14:48
本文選題:室內(nèi)定位 切入點(diǎn):蜂窩網(wǎng) 出處:《電子與信息學(xué)報》2017年05期 論文類型:期刊論文
【摘要】:針對無線信道動態(tài)衰落特性引起的蜂窩網(wǎng)室內(nèi)定位誤差較大的問題,該文提出基于密度的空間聚類(Density Based Spatial Clustering of Applications with Noise,DBSCAN)子空間匹配算法,有效剔除大誤差點(diǎn),提高定位精度。首先通過劃分信號空間,構(gòu)建多個子空間,在子空間中利用加權(quán)K近鄰匹配算法(Weighted K Nearest Neighbor,WKNN)估計出目標(biāo)位置;然后利用DBSCAN對估計位置進(jìn)行聚類以剔除異常點(diǎn);最后結(jié)合概率模型確定最終估計位置。實驗結(jié)果表明,基于DBSCAN的子空間匹配算法能有效剔除大誤差點(diǎn),提高蜂窩網(wǎng)室內(nèi)定位系統(tǒng)的整體性能。
[Abstract]:In order to solve the problem of large indoor location error caused by the dynamic fading characteristics of wireless channels, this paper proposes a density-based spatial clustering Based Clustering of Applications with Noisegne DBSCAN-based subspace matching algorithm, which can effectively eliminate large error points. Firstly, several subspaces are constructed by dividing the signal space, and then the weighted K Nearest neighbor matching algorithm is used to estimate the target position in the subspace, and then the estimated position is clustered by DBSCAN to eliminate the outliers. The experimental results show that the subspace matching algorithm based on DBSCAN can effectively eliminate large error points and improve the overall performance of indoor positioning system in cellular networks.
【作者單位】: 重慶郵電大學(xué)移動通信重點(diǎn)實驗室;
【基金】:國家自然科學(xué)基金(61301126) 長江學(xué)者和創(chuàng)新團(tuán)隊發(fā)展計劃(IRT1299) 重慶市基礎(chǔ)與前沿研究計劃(cstc2013jcyjA 40041,cstc2015jcyj BX0065) 重慶郵電大學(xué)青年科學(xué)研究項目(A2013-31)~~
【分類號】:TN929.53
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 朱p荑,
本文編號:1556966
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1556966.html
最近更新
教材專著