城市環(huán)境中短多徑自適應(yīng)抑制方法的研究
本文關(guān)鍵詞: 導(dǎo)航定位 多徑殘留誤差 卡爾曼濾波 高度約束 出處:《東南大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:全球?qū)Ш叫l(wèi)星系統(tǒng)(Global Navigation Satellite System,GNSS)經(jīng)過三十余年不斷研究與發(fā)展,在軍事和民用的各個(gè)領(lǐng)域產(chǎn)生了深刻影響。城市環(huán)境中由于高樓林立產(chǎn)生的短多徑效應(yīng),成為GNSS觀測(cè)值中的一個(gè)重要誤差源,嚴(yán)重降低了定位精度。本文重點(diǎn)研究了卡爾曼濾波算法在抑制多徑誤差方面的應(yīng)用,在此基礎(chǔ)上研究復(fù)雜城市環(huán)境中的短多徑自適應(yīng)抑制方法。本文首先根據(jù)偽距定位原理建立球面定位模型,從理論上分析呈"矩形"分布和"震蕩"分布的偽距誤差對(duì)定位結(jié)果的影響,得出站心坐標(biāo)系下三個(gè)方向上的定位誤差也呈"矩形"和"震蕩"分布且高度定位誤差要大于東北平面水平定位誤差的結(jié)論,并通過衛(wèi)星信號(hào)模擬器仿真驗(yàn)證了該結(jié)論,并且,仿真結(jié)果表明高度定位誤差約為水平定位誤差的三倍。為解決高度定位誤差大的問題,本文提出了一種基于高度約束的自適應(yīng)卡爾曼濾波(Height Constrained Adaptive Kalman Filtering,HCAKF)算法,根據(jù)車載等低速接收機(jī)建立高度約束模型,通過構(gòu)造高度上的約束條件和上一歷元的接收機(jī)狀態(tài),利用最小均方誤差原理來約束當(dāng)前接收機(jī)的運(yùn)動(dòng)狀態(tài),從而使得定位結(jié)果更加準(zhǔn)確。為驗(yàn)證HCAKF算法對(duì)短多徑效應(yīng)的抑制性能,分別在靜態(tài)開放天空?qǐng)鼍昂椭本運(yùn)動(dòng)場(chǎng)景下進(jìn)行仿真測(cè)試,結(jié)果表明:靜態(tài)開放天空?qǐng)鼍跋?HCAKF算法的高度定位誤差幾乎為零,水平定位誤差相對(duì)于標(biāo)準(zhǔn)擴(kuò)展卡爾曼濾波(Extended Kaman Filtering,EKF)算法減小了 25.36%,相對(duì)于AKF算法減小了 13.05%,總誤差相對(duì)于EKF算法減小了 44.37%,相對(duì)于自適應(yīng)卡爾曼濾波(Adaptive Kaman Filtering,AKF)算法減小了 39.86%;直線運(yùn)動(dòng)場(chǎng)景下,HCAKF算法的高度定位誤差相對(duì)于EKF算法減小了 67.12%,相對(duì)于AKF算法減小了 47.63%,總誤差相對(duì)于EKF算法減小了 63.50%,相對(duì)于AKF算法減小了 35.65%。為了對(duì)比本論文定位算法和市面上同類產(chǎn)品定位性能,建立了同信號(hào)源全球定位系統(tǒng)(Global Position System,GPS)/北斗二號(hào)(Beidou-2,BD2)衛(wèi)星導(dǎo)航系統(tǒng)雙模接收機(jī)驗(yàn)證平臺(tái)。基于該雙模接收機(jī)驗(yàn)證平臺(tái),在城市復(fù)雜環(huán)境中測(cè)試了 HCAKF算法的短多徑抑制性能。測(cè)試結(jié)果表明:在窗臺(tái)短多徑靜態(tài)環(huán)境中,HCAKF算法的高度定位誤差幾乎為零,水平定位誤差相對(duì)于對(duì)照組減小了 48.44%,總體定位誤差相對(duì)于對(duì)照組減小了 53.71%。在城市復(fù)雜動(dòng)態(tài)環(huán)境下,HCAKF算法的高度定位誤差相對(duì)于對(duì)照組減小了 69.24%,總體定位誤差相對(duì)于對(duì)照組減小了 50.32%。
[Abstract]:After more than 30 years' continuous research and development, the Global Navigation Satellite system (GNSS) has had a profound impact in military and civilian fields. It has become an important error source in GNSS observations, which seriously reduces the positioning accuracy. In this paper, the application of Kalman filtering algorithm to the suppression of multipath errors is mainly studied. On this basis, the short and multi-track self-adaptive suppression method in complex urban environment is studied. Firstly, a spherical localization model is established according to the pseudo-range positioning principle. The influence of pseudo-range error of "rectangular" distribution and "oscillation" distribution on the positioning results is theoretically analyzed. It is concluded that the positioning error in three directions is also "rectangular" and "oscillating" in the geostationary coordinate system, and the height positioning error is larger than the horizontal positioning error in the northeast plane, which is verified by the simulation of the satellite signal simulator. The simulation results show that the height location error is about three times that of the horizontal positioning error. In order to solve the problem of large height location error, a height Constrained Adaptive Kalman filtering algorithm based on height constraint is proposed in this paper. The height constraint model is established according to the vehicle equal low speed receiver. By constructing the height constraint condition and the receiver state of the previous epoch, the moving state of the current receiver is constrained by the principle of minimum mean square error. In order to verify the performance of the HCAKF algorithm to suppress the short multipath effect, the simulation tests are carried out in the static open sky scene and the linear motion scene, respectively. The results show that the altitude location error of HCAKF algorithm is almost zero in the static open sky scene. Compared with the standard extended Kaman filtering algorithm, the horizontal location error is reduced by 25.36, compared with the AKF algorithm by 13.05, the total error is reduced by 44.37 compared with the EKF algorithm, and the adaptive Kaman filtering algorithm is reduced by the adaptive Kalman filter algorithm. The height error of EKF algorithm is reduced 67.12 compared with that of EKF algorithm, the total error is reduced by 63.50 and 35.65 points relative to EKF algorithm, compared with AKF algorithm, the total error is reduced by 63.50 and 35.65 respectively, compared with that of EKF algorithm, the total error is reduced by 63.50 and 35.65, respectively, and that of EKF algorithm is reduced by 67.63 compared with AKF algorithm, and the total error is reduced by 63.50 compared with EKF algorithm. Comparing the localization algorithm of this paper with the localization performance of similar products on the market, A dual-mode receiver verification platform for Global Position system (GPS) / Beidou-2 (BD2) satellite navigation system with the same signal source is established. The short multipath suppression performance of HCAKF algorithm is tested in complex urban environment. The test results show that the height location error of HCAKF algorithm is almost zero in the short multipath static environment of window sill. Compared with the control group, the horizontal positioning error was reduced by 48.44 and the overall positioning error was reduced by 53.71.The height positioning error of HCAKF algorithm was reduced by 69.24and the total positioning error was decreased compared with the control group in the complex dynamic environment of the city. The difference was 50.32 in comparison with the control group.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN967.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓兆興,王小軍;定位誤差的計(jì)算機(jī)數(shù)據(jù)處理[J];陜西工學(xué)院學(xué)報(bào);2002年04期
2 李程輝;;定位誤差的計(jì)算方法探討[J];科技致富向?qū)?2013年24期
3 張毅;冉苒;張慎輝;;雷達(dá)定位誤差對(duì)飛機(jī)流延誤的影響研究[J];計(jì)算機(jī)仿真;2013年05期
4 趙曉波;;夾具設(shè)計(jì)中定位誤差計(jì)算方法的研究[J];武漢水運(yùn)工程學(xué)院學(xué)報(bào);1991年04期
5 吳玉光;宋建青;;夾具平面定位誤差的連桿機(jī)構(gòu)模型及其概率分析[J];計(jì)算機(jī)集成制造系統(tǒng);2010年12期
6 張曉霞,段發(fā)階,葉聲華,王春和;視覺檢測(cè)系統(tǒng)定位誤差分離方法[J];光電工程;1996年03期
7 王正平;用激光向量測(cè)量技術(shù)測(cè)量和補(bǔ)償體積定位誤差[J];計(jì)量技術(shù);2001年10期
8 朱曉飛;張連環(huán);;飛行中慣導(dǎo)定位誤差的修正方法研究[J];電子世界;2012年23期
9 尚軍平,張士選,毛乃宏;探頭定位誤差對(duì)遠(yuǎn)場(chǎng)特性的影響[J];西安電子科技大學(xué)學(xué)報(bào);1999年02期
10 夏蔚軍 ,吳智銘,李濟(jì)順 ,張洛平;數(shù)控系統(tǒng)定位誤差的測(cè)量與補(bǔ)償[J];測(cè)控技術(shù);2003年12期
相關(guān)會(huì)議論文 前4條
1 王姍姍;趙琳;朱秋東;曹根瑞;李林;;分塊鏡定位誤差的允差分析[A];中國光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
2 袁大偉;;工作臺(tái)周期性定位誤差對(duì)加工精度的影響[A];第五屆全國電加工學(xué)術(shù)年會(huì)論文集(線切割加工篇)[C];1986年
3 張潤澤;;現(xiàn)代船舶交管雷達(dá)定位誤差的分析與綜合[A];中國航海學(xué)會(huì)優(yōu)秀論文文摘及學(xué)術(shù)會(huì)議論文目次匯編(1990—1991)[C];1992年
4 劉輝;尚克軍;劉峰;李邦清;;陸用光纖捷聯(lián)慣導(dǎo)系統(tǒng)定位誤差自主抑制技術(shù)[A];2010年慣性技術(shù) 發(fā)展動(dòng)態(tài) 發(fā)展方向研討會(huì)文集[C];2010年
相關(guān)碩士學(xué)位論文 前9條
1 孫超;定位誤差程式化計(jì)算方法[D];太原科技大學(xué);2015年
2 蔡成;裝夾方案快速設(shè)計(jì)與誤差評(píng)價(jià)技術(shù)研究[D];西南交通大學(xué);2016年
3 馬金鳳;城市環(huán)境中短多徑自適應(yīng)抑制方法的研究[D];東南大學(xué);2017年
4 陳思偉;視覺引導(dǎo)抓取機(jī)械手工作平面定位誤差與修正[D];天津大學(xué);2014年
5 黃華平;基于有向尺寸路徑的定位誤差計(jì)算方法[D];南昌航空大學(xué);2014年
6 張強(qiáng);三維定位誤差計(jì)算模型自動(dòng)生成軟件研制[D];杭州電子科技大學(xué);2013年
7 曹璐云;可測(cè)距無線傳感網(wǎng)的定位算法研究[D];湘潭大學(xué);2014年
8 朱小龍;數(shù)控機(jī)床定位誤差復(fù)合建模與補(bǔ)償研究[D];上海交通大學(xué);2014年
9 吳丹丹;數(shù)控機(jī)床定位誤差快速標(biāo)定裝置[D];華中科技大學(xué);2007年
,本文編號(hào):1522352
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1522352.html