低損耗、小模場(chǎng)太赫茲波導(dǎo)研究
發(fā)布時(shí)間:2018-02-01 15:01
本文關(guān)鍵詞: THz波導(dǎo) 模場(chǎng)寬度 模式損耗 表面等離激元 出處:《深圳大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:太赫茲(Terahertz,簡(jiǎn)稱THz)波是指頻率在0.1~1 THz范圍內(nèi)的電磁波,位于紅外與微波之間,處于宏觀電子學(xué)向微觀電子學(xué)的過(guò)渡階段,因而具有許多獨(dú)特的性質(zhì)。在基礎(chǔ)物理科學(xué)、超高速通信、高分辨率成像、安全檢查、無(wú)損檢測(cè)等方面具有重要的研究?jī)r(jià)值和廣泛的應(yīng)用前景。但目前缺乏低損耗、長(zhǎng)距離傳輸?shù)牟▽?dǎo)使得太赫茲的應(yīng)用受到很大限制,開(kāi)發(fā)低損耗、小模場(chǎng)的太赫茲波導(dǎo)對(duì)于推動(dòng)太赫茲技術(shù)的實(shí)際應(yīng)用具有十分重要的意義。由于現(xiàn)有的波導(dǎo)普遍存在低損耗與小模場(chǎng)難以同時(shí)實(shí)現(xiàn)的問(wèn)題,由此,本文對(duì)傳統(tǒng)波導(dǎo)的結(jié)構(gòu)和材料進(jìn)行可行性改進(jìn),分別提出了置于介質(zhì)孔內(nèi)的納米金屬線、石墨烯包裹的水滴狀延拓納米線、金屬-縫隙-介質(zhì)對(duì)稱型波導(dǎo),并利用數(shù)值分析軟件與基于有限元方法的COMSOL商用軟件研究了它們的傳導(dǎo)特性。首先,利用COMSOL軟件對(duì)置于介質(zhì)孔內(nèi)的金屬線的表面等離激元模式進(jìn)行仿真研究,并能與數(shù)值計(jì)算結(jié)果相互呼應(yīng)。理論上很好地證明了置于介質(zhì)孔內(nèi)的金屬線可以保持模式寬度與單金屬線基本一致的情況下,將損耗降至極低。其主要原因是引入足夠大的介質(zhì)孔能夠改變部分模場(chǎng),在維持模式寬度基本不變的前提下,使得集中在金屬線內(nèi)的場(chǎng)能減小,從而縮小傳輸損耗。在工作頻率為0.3 THz時(shí),金屬線半徑為100 nm,損耗的理論值非常小,為0.42 m~(-1),同時(shí)模場(chǎng)寬度僅為納米量級(jí)(290 nm)。其次,提出了利用石墨烯包裹的水滴狀延拓納米線傳導(dǎo)THz表面等離激元。我們采用在太赫茲頻段具有類金屬性質(zhì)的石墨烯材料包裹在水滴狀延拓納米線外,利用COMSOL求解,結(jié)果發(fā)現(xiàn),該波導(dǎo)可以大大降低模式寬度。在工作頻率為3 THz,底弧R為1μm時(shí),在波導(dǎo)的楔形頂角出現(xiàn)寬度很小的亮斑,模式寬度為34 nm,其傳輸損耗為1.3 mm~(-1),即傳播長(zhǎng)度近800μm(相當(dāng)于7λ0)。即該波導(dǎo)在保證傳輸損耗較低的前提下,實(shí)現(xiàn)了納米聚焦。最后,提出金屬-縫隙-介質(zhì)對(duì)稱型波導(dǎo),主要包括兩種類型:平板型和柱型,主要是利用插入電介質(zhì)的方法改變了金屬平板(或者金屬空芯管)的模場(chǎng)特點(diǎn)。我們分別通過(guò)理論推導(dǎo)出TE模、TM模與HE模的色散方程。從數(shù)值計(jì)算結(jié)果直觀地發(fā)現(xiàn),模場(chǎng)更集中在介質(zhì)層內(nèi),在模場(chǎng)寬度不增大的前提下,這種波導(dǎo)可以實(shí)現(xiàn)超低損耗傳輸THz波。當(dāng)f為0.5 THz,平行平板DGM波導(dǎo)中兩個(gè)金屬層間距為b=λ/2時(shí),TE1模和TM1模的最小損耗分別為0.21 m~(-1)和0.17 m~(-1);對(duì)于柱狀DGM波導(dǎo),金屬銅管(內(nèi)環(huán))直徑為2λ/3時(shí),HE11模的最小損耗為0.20 m~(-1)。與不插入電介質(zhì)的波導(dǎo)相比,它們的損耗均可以下降1~3個(gè)數(shù)量級(jí)。
[Abstract]:Terahertz (THz) waves are electromagnetic waves with a frequency of 0.1 THz, between infrared and microwave. At the stage of transition from macroelectronics to microelectronics, it has many unique properties. In basic physics science, ultra-high speed communication, high resolution imaging, security inspection. Nondestructive testing (NDT) has important research value and wide application prospect. However, the lack of low loss and long distance transmission waveguide make the application of terahertz to be greatly limited, and the development of low loss. THz waveguides with small mode field are of great significance to promote the practical application of THz technology. Because the existing waveguides are generally low loss and small mode field difficult to achieve at the same time. In this paper, the structure and materials of traditional waveguides are improved. Nanowires, water droplet extension nanowires, metal-crevice dielectric symmetric waveguides, which are placed in dielectric holes, are proposed respectively. Numerical analysis software and COMSOL commercial software based on finite element method are used to study their conduction characteristics. First of all. COMSOL software is used to simulate the surface of the metal wire in the dielectric hole. It is proved in theory that the metal wire placed in the dielectric hole can keep the mode width basically consistent with the single metal wire. The main reason is that the medium hole can change part of the mode field, and the field energy concentrated in the metal wire can be reduced under the premise of maintaining the mode width basically unchanged. Thus, the transmission loss is reduced. When the operating frequency is 0.3 THz, the wire radius is 100nm.The theoretical value of the loss is very small, which is 0.42 mm2 ~ (-1). At the same time, the width of the mode field is only about 290 nm ~ (-1) nanoscale. Water droplet extension nanowires coated with graphene were proposed to conduct isoexcitons on THz surface. Graphene materials with metal-like properties in terahertz band were used to encapsulate water droplet continuation nanowires. Using COMSOL solution, it is found that the mode width of the waveguide can be greatly reduced. When the operating frequency is 3 THZ and the bottom arc R is 1 渭 m, a small width bright spot appears in the wedge top angle of the waveguide. The mode width is 34 nm and the transmission loss is 1.3 mm / L, that is, the propagation length is nearly 800 渭 m (equivalent to 7 位 0), that is, the transmission loss of the waveguide is low. Finally, the metal-crevice dielectric symmetrical waveguide is proposed, which includes two types: plate type and column type. The mode field characteristics of metal plate (or metal hollow tube) are changed by the method of inserting dielectric. The dispersion equations of TM mode and HE mode. From the numerical results, it is found that the mode field is more concentrated in the dielectric layer and the width of the mode field does not increase. The ultra-low loss THz wave can be transmitted by this waveguide. When f is 0. 5 THZ, the distance between the two metal layers in the parallel plate DGM waveguide is b = 位 / 2:00. The minimum loss of TE1 mode and TM1 mode are 0.21 m-1 and 0.17 mG-1, respectively. For a cylindrical DGM waveguide, the minimum loss of the metallic copper tube (inner ring) is 0.20 m / m ~ (-1) in diameter of 2 位 / 3:00 ~ (-1) H _ (11) mode, compared with the waveguide without dielectric insertion. Their losses can be reduced by 1 ~ 3 orders of magnitude.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN814
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 Xin-Yi Li;Li-Chun Zhu;Jin-Wen Hu;Zhi-Heng Li;;Differential correction method applied to measurement of the FAST reflector[J];Research in Astronomy and Astrophysics;2016年08期
2 章亮;張巍;聶秋華;戴世勛;陳昱;;二維光子晶體波導(dǎo)研究進(jìn)展[J];激光與光電子學(xué)進(jìn)展;2013年03期
,本文編號(hào):1482144
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1482144.html
最近更新
教材專著