LHC/ALICE實(shí)驗(yàn)質(zhì)心系能量13TeV質(zhì)子—質(zhì)子碰撞中伴隨粒子事件產(chǎn)生性質(zhì)的研究
發(fā)布時(shí)間:2020-12-04 10:58
在近幾十年來,夸克膠子等離子體(QGP)—直吸引著物理學(xué)家們的濃厚興趣?淇四z子等離子體是有別于日常強(qiáng)子物質(zhì)的一種新的物質(zhì)相態(tài),它曾在宇宙大爆炸(Big Bang)后很短的一段時(shí)間內(nèi)出現(xiàn)過,并深深地影響了宇宙的演化過程及現(xiàn)有宇宙中所有物質(zhì)的形成。在夸克膠子等離子體內(nèi),部分子(夸克和膠子的統(tǒng)稱)是漸進(jìn)自由的。相對(duì)論重離子碰撞實(shí)現(xiàn)了物理學(xué)家們?cè)趯?shí)驗(yàn)室中創(chuàng)造一個(gè)小型宇宙大爆炸的愿望,使在實(shí)驗(yàn)室中對(duì)夸克膠子等離子體的形成及特性展開系統(tǒng)分析成為可能。從超級(jí)質(zhì)子同步加速器(SPS)到相對(duì)論重離子對(duì)撞機(jī)(RHIC),再到最新的大型強(qiáng)子對(duì)撞機(jī)(LHC),物理學(xué)家們已經(jīng)在不同的碰撞系統(tǒng),不同的碰撞能量下對(duì)夸克膠子等離子體做了系統(tǒng)性的研究,但仍然存在諸多懸而未決的問題。高能部分子在穿越夸克膠子等離子體時(shí)受到強(qiáng)相互作用會(huì)損失部分能量,部分子然后經(jīng)過碎裂(fragmentation)過程形成一個(gè)末態(tài)粒子噴注(jet),由于QGP誘導(dǎo)入射部分子輻射膠子損失能量被稱為噴注淬火(jetquenching)。RAA是高能物理實(shí)驗(yàn)上一個(gè)非常重要的觀測(cè)量,它反應(yīng)了部分子在穿越夸克膠子等離子體時(shí)能量損失的程度。在RAA的測(cè)...
【文章來源】:華中師范大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:156 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1 QGP and Relativistic Heavy Ion Collisions
1.1 Standard Model of particle physics
1.2 Quantum Chromodynamics
1.2.1 QCD Lagrangian
1.2.2 Asymptotic freedom
1.3 Quark Gluon Plasma
1.3.1 Lattice QCD predictions
1.3.2 QCD phase diagram
1.4 Relativistic Heavy Ion Collisions
2 Underlying Event
2.1 Multiple parton interactions
2.2 Monte Carlo models
2.2.1 PYTHIA 8
2.2.2 EPOS LHC
2.3 Overview of UE measurements
2.3.1 UE measurements at the RHIC
2.3.2 UE measurements at the Tevatron
2.3.3 UE measurements with ALICE detector
2.3.4 UE measurements with ATLAS detector
2.3.5 UE measurements with CMS detector
T"> 2.4 Relative Transverse Activity Classifier,RT
3 The ALICE detector at the LHC
3.1 The Large Hadron Collider(LHC)
3.2 A Large Ion Collider Experiment
3.2.1 ALICE detector layout
3.2.2 Trigger system
3.2.3 Offline framework
3.2.4 Performance
4 UE activity leading track pr dependence
4.1 Introduction
4.2 Data sample
4.3 Event and track selection criterion
4.4 correction procedures
4.4.1 Leading track misidentification
4.4.2 Track contamination
4.4.3 Tracking efficiency
4.4.4 Vertex reconstruction
4.5 Systematic uncertainty
4.5.1 ITS-TPC track matching
4.5.2 Track cuts
4.5.3 Misidentification bias
4.5.4 Strangeness bias
4.5.5 Vertex reconstruction
4.5.6 Monte-Carlo dependence
4.5.7 Non closure in Monte-Carlo
4.6 Results
T "> 4.6.1 UE distributions versus leading pT
4.6.2 Charged particle dN/dη in the Transverse region
T dependence">5 UE activity RT dependence
5.1 Introduction
5.2 Data sample
5.3 Event and track selection criterion
5.4 correction procedures
5.4.1 Leading-track misidentification
5.4.2 Track contamination
5.4.3 Tracking efficiency
5.4.4 Vertex reconstruction
5.5 Unfolding and re-weight
5.5.1 response matrix rebuilding
5.5.2 Bayesian unfolding method
5.5.3 Re-weight
5.6 Systematical uncertainty
5.6.1 ITS-TPC track matching efficiency
5.6.2 Track cuts
5.6.3 Monte Carlo dependence
5.6.4 Non closure in Monte-Carlo
5.6.5 vertex selection
5.6.6 Number of tracks to the primary vertex
5.6.7 Iterations
5.6.8 Unfolding approach
5.7 results
5.7.1 Event probability distribution
"> 5.7.2 Charged particle
6 Summary and outlook
Bibliography
List of publications and activities
論文中文簡(jiǎn)介
Acknowledgements
本文編號(hào):2897479
【文章來源】:華中師范大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:156 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1 QGP and Relativistic Heavy Ion Collisions
1.1 Standard Model of particle physics
1.2 Quantum Chromodynamics
1.2.1 QCD Lagrangian
1.2.2 Asymptotic freedom
1.3 Quark Gluon Plasma
1.3.1 Lattice QCD predictions
1.3.2 QCD phase diagram
1.4 Relativistic Heavy Ion Collisions
2 Underlying Event
2.1 Multiple parton interactions
2.2 Monte Carlo models
2.2.1 PYTHIA 8
2.2.2 EPOS LHC
2.3 Overview of UE measurements
2.3.1 UE measurements at the RHIC
2.3.2 UE measurements at the Tevatron
2.3.3 UE measurements with ALICE detector
2.3.4 UE measurements with ATLAS detector
2.3.5 UE measurements with CMS detector
T"> 2.4 Relative Transverse Activity Classifier,RT
3.1 The Large Hadron Collider(LHC)
3.2 A Large Ion Collider Experiment
3.2.1 ALICE detector layout
3.2.2 Trigger system
3.2.3 Offline framework
3.2.4 Performance
4 UE activity leading track pr dependence
4.1 Introduction
4.2 Data sample
4.3 Event and track selection criterion
4.4 correction procedures
4.4.1 Leading track misidentification
4.4.2 Track contamination
4.4.3 Tracking efficiency
4.4.4 Vertex reconstruction
4.5 Systematic uncertainty
4.5.1 ITS-TPC track matching
4.5.2 Track cuts
4.5.3 Misidentification bias
4.5.4 Strangeness bias
4.5.5 Vertex reconstruction
4.5.6 Monte-Carlo dependence
4.5.7 Non closure in Monte-Carlo
4.6 Results
T
T
5.1 Introduction
5.2 Data sample
5.3 Event and track selection criterion
5.4 correction procedures
5.4.1 Leading-track misidentification
5.4.2 Track contamination
5.4.3 Tracking efficiency
5.4.4 Vertex reconstruction
5.5 Unfolding and re-weight
5.5.1 response matrix rebuilding
5.5.2 Bayesian unfolding method
5.5.3 Re-weight
5.6 Systematical uncertainty
5.6.1 ITS-TPC track matching efficiency
5.6.2 Track cuts
5.6.3 Monte Carlo dependence
5.6.4 Non closure in Monte-Carlo
5.6.5 vertex selection
5.6.6 Number of tracks to the primary vertex
5.6.7 Iterations
5.6.8 Unfolding approach
5.7 results
5.7.1 Event probability distribution
"> 5.7.2 Charged particle
6 Summary and outlook
Bibliography
List of publications and activities
論文中文簡(jiǎn)介
Acknowledgements
本文編號(hào):2897479
本文鏈接:http://sikaile.net/kejilunwen/wulilw/2897479.html
最近更新
教材專著