基于非負(fù)矩陣分解的SAR圖像目標(biāo)配置識(shí)別
[Abstract]:Synthetic Aperture Radar (Synthetic Aperture Radar,SAR) has the characteristics of all-day, all-weather and so on. It is one of the important technical measures of Earth observation and military detection. Target configuration and recognition of SAR image is one of the key techniques of SAR image analysis and interpretation. With strong commercial and military value, it has become a hot research topic at home and abroad. Feature extraction is one of the key techniques in the research of target configuration and recognition in SAR images. The main purpose of image feature extraction is to suppress the influence of speckle noise on the recognition rate and to maximize the sparsity of SAR images, so the quality of image feature extraction will directly affect the recognition accuracy. At present, the methods of object configuration and recognition in SAR image are mostly based on gray correlation matching and two-dimensional moment invariant feature, or based on object edge detection and so on. The main idea of the method is to construct the feature matrix by extracting the parameters of image domain or wavelet domain. Although the method based on global feature can obtain better recognition accuracy, it is greatly affected by noise, has high computational cost and slow speed. As a result, the practicability is not strong. In this paper, we study the nonnegative matrix factorization (Nonnegative Matrix Factorization,NMF), an effective non-negative data processing method, which has the advantages of fast decomposition speed, explicit physical significance and simple implementation. It has become an important research direction in the field of dimensionality reduction analysis of high dimensional data. In this paper, based on the research of the existing NMF algorithm, we propose the following three improved methods of nonnegative matrix factorization: 1. A sparse constraint nonnegative matrix decomposition method. This method takes full advantage of the sparsity of the SAR image itself and extracts the sparse features of the image by improving the NMF method. The sparse properties of SAR images are characterized effectively. In terms of feature sparsity and feature mapping, the performance is better than that of NMF and the existing sparse NMF.2, which is an approximate orthogonal nonnegative matrix factorization. Because NMF has non-negative constraints, adding orthogonal constraints will bring sparsity to the matrix, which can extract sparse features from images. It ensures the non-negativity and locality of the low-dimensional feature, reduces the error of decomposition, and improves the ability to adjust the sparsity. 3, a smooth constrained sparse non-negative matrix decomposition method. In this method, smooth constraints are added to the nonsmooth nonnegative matrix decomposition method. Because in the matrix, each column vector is independent and influence, the change of a column of image information does not affect the image information of the previous column or the next column, which is similar to the Markov stochastic process (Markoff random process,MDP). So we can add Markov Random Field (Markov Random Field,MRF) model in feature extraction process. The proposed method is superior to the existing NMF method in sparsity and feature mapping.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姜偉;楊炳儒;隋海峰;;局部敏感非負(fù)矩陣分解[J];計(jì)算機(jī)科學(xué);2010年12期
2 高燕燕;;非負(fù)矩陣分解及其應(yīng)用探討[J];硅谷;2011年23期
3 郝紅;徐常青;張新平;;基于非負(fù)矩陣分解的航拍圖像信息提取[J];浙江農(nóng)林大學(xué)學(xué)報(bào);2012年01期
4 汪鵬;;非負(fù)矩陣分解:數(shù)學(xué)的奇妙力量[J];計(jì)算機(jī)教育;2004年10期
5 高宏娟;潘晨;;基于非負(fù)矩陣分解的人臉識(shí)別算法的改進(jìn)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2007年11期
6 李勇智;楊靜宇;;基于非負(fù)矩陣分解新的人臉識(shí)別方法[J];系統(tǒng)仿真學(xué)報(bào);2008年01期
7 張永鵬;鄭文超;張曉輝;;非負(fù)矩陣分解及其在圖像壓縮中的應(yīng)用[J];西安郵電學(xué)院學(xué)報(bào);2008年03期
8 李芳;朱群雄;;基于矩陣變換的快速非負(fù)矩陣分解[J];北京郵電大學(xué)學(xué)報(bào);2010年04期
9 王亞芳;;鄰域保持判別非負(fù)矩陣分解[J];計(jì)算機(jī)工程與應(yīng)用;2010年28期
10 高宏娟;;基于NMF改進(jìn)算法的人臉識(shí)別仿真研究[J];計(jì)算機(jī)仿真;2011年12期
相關(guān)會(huì)議論文 前10條
1 孫江明;李通化;;非平滑三維非負(fù)矩陣分解[A];第九屆全國計(jì)算(機(jī))化學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2007年
2 蔣永鍇;葉東毅;;基于稀疏非負(fù)矩陣分解的自動(dòng)多文摘方法[A];中國計(jì)算機(jī)語言學(xué)研究前沿進(jìn)展(2007-2009)[C];2009年
3 馬帥;吳飛;楊易;邵健;;基于稀疏非負(fù)矩陣分解的圖像檢索[A];第七屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2011)論文集【oral】[C];2011年
4 徐利民;龔珊;余再軍;;奇異值分解與非負(fù)矩陣分解色在數(shù)據(jù)降維方面的特性分析[A];2010年通信理論與信號(hào)處理學(xué)術(shù)年會(huì)論文集[C];2010年
5 蔡蕾;朱永生;;基于稀疏性非負(fù)矩陣分解和支持向量機(jī)的軸心軌跡圖識(shí)別[A];2008年全國振動(dòng)工程及應(yīng)用學(xué)術(shù)會(huì)議暨第十一屆全國設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2008年
6 蔣霈霖;;KL散度下的非負(fù)矩陣分解[A];中國自動(dòng)化學(xué)會(huì)中南六。▍^(qū))2010年第28屆年會(huì)·論文集[C];2010年
7 楊寶;朱啟兵;黃敏;;基于非負(fù)矩陣分解一稀疏表示分類的玻璃缺陷圖像識(shí)別[A];第24屆中國控制與決策會(huì)議論文集[C];2012年
8 錢樂樂;高雋;徐小紅;;非負(fù)性約束的圖像稀疏編碼[A];第七屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2009年
9 朱昊;黃源水;付夢(mèng)印;;基于NMF的道路識(shí)別算法在野外環(huán)境感知中的應(yīng)用[A];第九屆全國光電技術(shù)學(xué)術(shù)交流會(huì)論文集(下冊(cè))[C];2010年
10 鄭能恒;蔡毅;李霞;Tan Lee;;基于非負(fù)矩陣分解和向量相似測(cè)度的語音與音樂分離算法[A];第十一屆全國人機(jī)語音通訊學(xué)術(shù)會(huì)議論文集(一)[C];2011年
相關(guān)碩士學(xué)位論文 前10條
1 謝昊;非負(fù)矩陣分解初始化及其應(yīng)用[D];暨南大學(xué);2015年
2 王一;凸與半非負(fù)矩陣分解的近點(diǎn)梯度方法研究[D];東北師范大學(xué);2015年
3 項(xiàng)磊;基于乳腺癌計(jì)算機(jī)輔助診斷的病理圖像分析[D];南京信息工程大學(xué);2015年
4 王丹;基于非負(fù)矩陣分解的腦電信號(hào)特征提取算法研究[D];燕山大學(xué);2015年
5 郭建虎;非負(fù)矩陣分解方法及其在人臉識(shí)別中的應(yīng)用[D];蘭州理工大學(xué);2010年
6 蔣冀翔;基于非負(fù)矩陣分解的信息獲取方法研究[D];東南大學(xué);2006年
7 譚青青;基于非負(fù)矩陣分解的腫瘤基因表達(dá)譜數(shù)據(jù)分析[D];安徽大學(xué);2015年
8 賴淑珍;非負(fù)矩陣分解若干算法研究與應(yīng)用[D];電子科技大學(xué);2014年
9 黃震;基于多視角非負(fù)矩陣分解的同名區(qū)分算法研究[D];大連理工大學(xué);2015年
10 馬帥;基于稀疏非負(fù)矩陣分解的圖像檢索[D];浙江大學(xué);2012年
,本文編號(hào):2325010
本文鏈接:http://sikaile.net/kejilunwen/wltx/2325010.html