SAR圖像自動(dòng)目標(biāo)識(shí)別研究
[Abstract]:Synthetic Aperture Radar Automatic Target recognition (SAR ATR) is a challenging problem in the field of national defense and civil affairs. In recent decades, SAR automatic target recognition technology has made great progress in preprocessing, feature extraction and recognition. The SAR automatic target recognition problem involves many techniques in the field of machine learning and pattern recognition. With the increasing of SAR image data acquisition ability, people pay more and more attention to the accurate, fast understanding and recognition of these images. Aiming at the automatic target recognition problem of synthetic Aperture Radar (SAR), this paper focuses on SAR image segmentation, feature extraction and recognition. The main work of this paper is as follows: 1. Aiming at the problem of SAR image preprocessing, several common filtering and segmentation methods are analyzed and discussed. A new SAR image segmentation method combining thresholding technique and morphological method is proposed, which can better preserve the details of target and shadow. Lay the foundation for subsequent recognition. 2. A target recognition method based on SAR target and shadow feature fusion is proposed, which makes full use of the structure information of SAR image. The target and shadow are separated from the clutter background to suppress the influence of background clutter on the subsequent recognition. Then the features of the target and shadow are extracted for serial fusion and the recognition results are obtained by combining the nearest neighbor classifier. The experimental results show that the method has good recognition performance. In view of the existing problems in SAR image target recognition, a fast SAR image target recognition method is proposed. The method introduces the idea of compressed perception, and uses random perception matrix to reduce the dimension of multi-scale image features. Then, the neighbor classifier is used to recognize the feature set after dimensionality reduction. The experimental results show that this method can effectively reduce the characteristic dimension and the running time.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TN957.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 倪維平;嚴(yán)衛(wèi)東;邊輝;吳俊政;蘆穎;王培忠;;基于MRF模型和形態(tài)學(xué)運(yùn)算的SAR圖像分割[J];電光與控制;2011年01期
2 杜廷娜,曹云露;數(shù)字圖像線性濾波分析與實(shí)現(xiàn)[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
3 汪雄良;冉承其;王正明;;基于緊致字典的基追蹤方法在SAR圖像超分辨中的應(yīng)用[J];電子學(xué)報(bào);2006年06期
4 石光明;劉丹華;高大化;劉哲;林杰;王良君;;壓縮感知理論及其研究進(jìn)展[J];電子學(xué)報(bào);2009年05期
5 魏弘博,呂振肅,蔣田仔,劉新艷;圖像分割技術(shù)縱覽[J];甘肅科學(xué)學(xué)報(bào);2004年02期
6 周建民;何秀鳳;;星載SAR圖像的斑點(diǎn)噪聲抑制與濾波研究[J];河海大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
7 鄭文;張?chǎng)?;基于CFAR的SAR圖像分割[J];廊坊師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年04期
8 謝志鵬;陳松燦;;CSMP:基于約束等距的壓縮感知匹配追蹤[J];計(jì)算機(jī)研究與發(fā)展;2012年03期
9 尹奎英;劉宏偉;金林;;快速的Otsu雙閾值SAR圖像分割法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2011年06期
10 袁禮海;宋建社;薛文通;趙偉舟;;SAR圖像自動(dòng)目標(biāo)識(shí)別系統(tǒng)研究與設(shè)計(jì)[J];計(jì)算機(jī)應(yīng)用研究;2006年11期
相關(guān)博士學(xué)位論文 前1條
1 尹奎英;SAR圖像處理及地面目標(biāo)識(shí)別技術(shù)研究[D];西安電子科技大學(xué);2011年
本文編號(hào):2126901
本文鏈接:http://sikaile.net/kejilunwen/wltx/2126901.html