大氣水汽探測(cè)激光雷達(dá)系統(tǒng)仿真與數(shù)據(jù)反演
本文選題:大氣水汽 切入點(diǎn):星載 出處:《北京理工大學(xué)》2014年博士論文 論文類型:學(xué)位論文
【摘要】:水汽作為大氣的一個(gè)重要組分,在降水、能量輸送、輻射平衡、云的形成、天氣和氣候?yàn)?zāi)害性監(jiān)視和預(yù)報(bào)中起著重要作用。激光雷達(dá)作為一種主動(dòng)大氣遙感手段,具有實(shí)時(shí)連續(xù)監(jiān)測(cè)、空間分辨率高、探測(cè)精度高等優(yōu)點(diǎn)。根據(jù)工作平臺(tái)不同,探測(cè)大氣水汽的激光雷達(dá)主要有地基拉曼散射激光雷達(dá)和星載距離分辨差分吸收激光雷達(dá)。 本文對(duì)大氣水汽探測(cè)地基拉曼散射激光雷達(dá)和星載距離分辨差分吸收激光雷達(dá)系統(tǒng)設(shè)計(jì)和反演算法展開了研究。論文主要研究?jī)?nèi)容包含三部分,首先完成了白天和夜晚有效測(cè)量中低部對(duì)流層水汽分布的地基拉曼激光雷達(dá)仿真設(shè)計(jì);其次完成了測(cè)量地表至平流層層底水汽分布的星載距離分辨差分吸收激光雷達(dá)系統(tǒng)仿真設(shè)計(jì);最后針對(duì)以上兩種激光雷達(dá)仿真回波信號(hào)研究了相關(guān)數(shù)據(jù)處理方法。 本文完成的主要?jiǎng)?chuàng)新性工作如下: 1)完成了能夠?qū)崿F(xiàn)中低部對(duì)流層水汽晝夜觀測(cè)的拉曼散射激光雷達(dá)系統(tǒng)仿真設(shè)計(jì)。根據(jù)中低部對(duì)流層大氣模式、水汽拉曼散射激光雷達(dá)回波模型和噪聲模型,分析了激光器發(fā)射波長(zhǎng)、能量、望遠(yuǎn)鏡口徑、大氣能見度等因素對(duì)系統(tǒng)回波信噪比,評(píng)價(jià)了發(fā)射系統(tǒng)、接收系統(tǒng)和大氣環(huán)境對(duì)大氣水汽探測(cè)地基拉曼散射激光雷達(dá)探測(cè)性能的影響。最終確定采用532nm作為發(fā)射波長(zhǎng)采用閃耀光柵分光的地基拉曼激光雷達(dá)系統(tǒng)設(shè)計(jì)方案,仿真結(jié)果表明:白天探測(cè)高度為4km,夜晚探測(cè)高度為9km,能夠滿足中低部對(duì)流層水汽廓線探測(cè)要求。 2)完成了測(cè)量地表至平流層層底水汽分布的星載距離分辨差分吸收激光雷達(dá)系統(tǒng)仿真設(shè)計(jì)。根據(jù)中緯度大氣標(biāo)準(zhǔn)模型給出的大氣氣溶膠、分子、水汽分布模型,利用引入多普勒展寬修正后的星載距離分辨差分吸收激光雷達(dá)回波模型和噪聲模型,分析了激光器能量與頻率穩(wěn)定性、望遠(yuǎn)鏡口徑與視場(chǎng)角、大氣環(huán)境、激光束指向等因素對(duì)系統(tǒng)回波信噪比和測(cè)量性能的影響。最后完成了大氣水汽探測(cè)星載距離分辨差分吸收激光雷達(dá)系統(tǒng)各主要部分的設(shè)計(jì)參數(shù),仿真結(jié)果表明:該系統(tǒng)能夠?qū)崿F(xiàn)海拔高度15km以下的水汽分布測(cè)量。 3)針對(duì)大氣水汽探測(cè)地基拉曼散射激光雷達(dá)和星載距離分辨差分吸收激光雷達(dá)的微弱回波信號(hào)提出了一種新閾值去噪法。該方法克服了原有硬閾值函數(shù)不連續(xù)、軟閾值函數(shù)丟失高頻信息的缺陷。分別采用計(jì)算機(jī)仿真模擬信號(hào)和激光雷達(dá)實(shí)際信號(hào)進(jìn)行去噪驗(yàn)證。在對(duì)計(jì)算機(jī)仿真信號(hào)去噪時(shí),定量分析MSE和輸出信噪比可知改進(jìn)后的新方法在信號(hào)去噪和有用信息保留優(yōu)于原有硬、軟閾值函數(shù)法;在對(duì)實(shí)際回波信號(hào)去噪時(shí),近場(chǎng)信號(hào)去噪效果良好,根據(jù)回波信號(hào)的遠(yuǎn)近同時(shí)對(duì)信號(hào)采用新閾值函數(shù)法去噪和軟閾值函數(shù)法去噪處理能夠更有效地提取有用信息、濾除噪聲。 4)利用上述新閾值函數(shù)去噪法對(duì)大氣水汽探測(cè)地基拉曼散射激光雷達(dá)和星載距離分辨差分吸收激光雷達(dá)仿真回波信號(hào)進(jìn)行反演,對(duì)比1976美國(guó)標(biāo)準(zhǔn)大氣模式后,給出了系統(tǒng)探測(cè)相對(duì)誤差。結(jié)果表明:大氣水汽地基拉曼散射激光雷達(dá)仿真系統(tǒng)回波反演后海拔5km以下的相對(duì)誤差小于20%,星載距離分辨差分吸收激光雷達(dá)仿真系統(tǒng)回波反演后海拔15km以下的相對(duì)誤差小于20%;驗(yàn)證了探測(cè)水汽的地基拉曼散射和星載距離分辨差分吸收激光雷達(dá)系統(tǒng)設(shè)計(jì)的合理性。另外需要指出的是針對(duì)星載距離分辨差分吸收激光雷達(dá)仿真回波信號(hào)的反演是按照引入多普勒展寬修正的新反演算法進(jìn)行的。
[Abstract]:Water vapor as an important group in the atmosphere, precipitation, energy transport, radiation balance, cloud formation, plays an important role in weather and climate disaster monitoring and forecasting. The laser radar as an active atmospheric remote sensing, with continuous real-time monitoring, high spatial resolution and detection precision. According to the working platform different lidar atmospheric water vapor are the main foundation of Raman scattering and laser radar range resolution spaceborne differential absorption lidar.
The foundation of the atmospheric water vapor detection Raman scattering laser radar and spaceborne range resolution differential absorption lidar system design and inversion algorithm are studied. The main contents of this thesis include three parts, first finished the day and night measurement of Raman lidar ground simulation design of the lower part of the troposphere water vapor distribution; secondly the bottom layers of water vapor the distribution of range resolution spaceborne differential absorption lidar system simulation design to measure surface advection; finally, in view of the above two kinds of laser radar echo signal simulation of data processing methods.
The main innovative work done in this article is as follows:
1) completed to achieve the Raman scattering laser radar system simulation design of the low tropospheric water vapor diurnal observation. According to the mode of the lower part of the troposphere, the water vapor Raman scattering laser radar echo model and noise model, analysis of the laser emission wavelength, energy, telescope aperture, atmospheric visibility and other factors on the system SNR, evaluation transmission system, receiver system and atmospheric environmental impact of atmospheric water vapor detecting foundation Raman scattering lidar. Ultimately determine the design using 532nm as the foundation of Raman lidar system using blazed grating light emission wavelength, the simulation results show that the daytime observation height is 4km, the night detection height is 9km, which can meet the low troposphere water vapor profile detection requirements.
2) the bottom layer of the vapor distribution range resolution spaceborne differential absorption lidar system simulation design to measure surface advection. According to atmospheric aerosol, given the midlatitude atmosphere of the standard model molecules, water vapor distribution model, using Doppler broadening corrected distance resolution spaceborne differential absorption laser radar echo and noise model model of laser energy and frequency stability are analyzed, and the angle of view of the telescope, the atmospheric environment, the effect of laser beam direction and other factors on the system SNR and measuring performance. The final completion of the atmospheric water vapor detection satelliteborne range resolution parameters of differential absorption lidar system for the main part, the simulation results show that: the system can achieve below the altitude of 15km water vapor distribution measurement.
3) for detecting ground atmospheric water vapor Raman scattering laser radar and spaceborne range resolution differential absorption lidar echo signal points proposed a new threshold denoising method. This method overcomes the hard threshold function is not continuous, defect of soft threshold function loss of high frequency information respectively. By computer simulation and laser radar the actual signal signal denoising. In computer simulation to verify the signal denoising, new method for quantitative analysis of MSE and the output signal-to-noise ratio shows that the improved denoising and useful information in the signal remains better than the original hard and soft threshold function method; in the actual echo signal denoising, near-field signal denoising effect is good at the same time, according to the echo signal of distance signal using the new threshold function denoising method can effectively extract the useful information, and the soft threshold function denoising method of filtering noise.
4) using the new threshold function for detecting ground atmospheric water vapor Raman scattering laser radar and spaceborne range resolution differential absorption lidar echo signal denoising simulation inversion method, comparing the 1976 US standard atmospheric model, the relative error detection system are given. The results show that the atmospheric water vapor foundation Raman scattering laser radar simulation system echo inversion the relative error below 5km above sea level is less than 20%, the range resolution of spaceborne differential absorption laser radar echo simulation system after inversion relative error below 15km above sea level is less than 20%; the detection of water vapor to verify Kiraman scattering and distance resolution spaceborne differential absorption laser radar system design rationality. In addition it is for satellite the range resolution of differential absorption laser radar echo signal simulation inversion is carried out in accordance with the introduction of the new inversion algorithm of Doppler broadening of the modified.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王庚辰;大氣氣溶膠濃度及其譜分布的某些特征[J];大氣科學(xué);1982年02期
2 李陶,戚福第,岳古明,金傳佳,胡歡陵,周軍;大氣中水汽混合比的Raman激光雷達(dá)探測(cè)[J];大氣科學(xué);2000年06期
3 趙曰峰;張寅超;洪光烈;趙培濤;蘇嘉;;受激拉曼增益激光雷達(dá)測(cè)量CO_2氣體[J];光電工程;2006年04期
4 季承荔;周軍;;機(jī)載雙波長(zhǎng)米散射激光雷達(dá)大氣回波信號(hào)與信噪比的模擬計(jì)算[J];大氣與環(huán)境光學(xué)學(xué)報(bào);2008年04期
5 劉會(huì)平,是度芳,賀渝龍,沙先武,謝建平;雙端差分吸收激光雷達(dá)及其大氣污染測(cè)試[J];光電子·激光;2001年01期
6 張志富;希爽;;關(guān)于露點(diǎn)溫度計(jì)算的探討[J];干旱區(qū)研究;2011年02期
7 劉玉麗;張寅超;蘇嘉;岳古明;周軍;胡歡陵;;轉(zhuǎn)動(dòng)拉曼激光雷達(dá)探測(cè)大氣溫度的系統(tǒng)設(shè)計(jì)及模擬計(jì)算[J];光散射學(xué)報(bào);2005年04期
8 吳永華,胡歡陵,周軍,胡順星,張民;L625激光雷達(dá)探測(cè)平流層氣溶膠[J];光學(xué)學(xué)報(bào);2001年08期
9 謝晨波;周軍;岳古明;戚福弟;范愛媛;;新型車載式拉曼激光雷達(dá)測(cè)量對(duì)流層水汽[J];光學(xué)學(xué)報(bào);2006年09期
10 馬昕;林宏;馬盈盈;龔?fù)?;差分吸收大氣CO_2激光雷達(dá)的大氣壓力增寬修正算法[J];光學(xué)學(xué)報(bào);2012年11期
相關(guān)博士學(xué)位論文 前1條
1 劉顯通;基于熱帶測(cè)雨衛(wèi)星光譜觀測(cè)的云參數(shù)反演及降水云識(shí)別研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年
,本文編號(hào):1622566
本文鏈接:http://sikaile.net/kejilunwen/wltx/1622566.html