65米射電望遠(yuǎn)鏡副面調(diào)整控制系統(tǒng)設(shè)計(jì)與控制策略研究
本文關(guān)鍵詞:65米射電望遠(yuǎn)鏡副面調(diào)整控制系統(tǒng)設(shè)計(jì)與控制策略研究 出處:《燕山大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 65米射電望遠(yuǎn)鏡 Stewart并聯(lián)機(jī)構(gòu) 控制系統(tǒng) 動(dòng)力學(xué) 前饋補(bǔ)償 回零 容錯(cuò) 工作空間
【摘要】:65米射電望遠(yuǎn)鏡采用Stewart型并聯(lián)機(jī)構(gòu)對(duì)副面位姿進(jìn)行調(diào)整,以實(shí)現(xiàn)指向誤差修正和饋源轉(zhuǎn)換。針對(duì)如何提高調(diào)整機(jī)構(gòu)的穩(wěn)定性、準(zhǔn)確性和快速性,設(shè)計(jì)了調(diào)整機(jī)構(gòu)的控制系統(tǒng)并對(duì)控制策略進(jìn)行了深入的理論分析和實(shí)驗(yàn)研究,主要內(nèi)容如下: 分析系統(tǒng)廣義坐標(biāo)與動(dòng)平臺(tái)以及驅(qū)動(dòng)分支速度、加速度的映射關(guān)系,計(jì)算各構(gòu)件的偏速度和偏角速度。通過對(duì)基座運(yùn)動(dòng)引起的各構(gòu)件速度、加速度進(jìn)行分析,得到基座運(yùn)動(dòng)引起的各構(gòu)件慣性力。采用具有高實(shí)時(shí)性特點(diǎn)的Kane方法分別對(duì)基座固定和運(yùn)動(dòng)情況下的調(diào)整機(jī)構(gòu)進(jìn)行動(dòng)力學(xué)建模,采用數(shù)值分析和Adams軟件仿真的方法,對(duì)上述兩種情況下系統(tǒng)動(dòng)力學(xué)性能進(jìn)行對(duì)比分析。 在PID反饋控制基礎(chǔ)上,設(shè)計(jì)能夠?qū)崿F(xiàn)速度、加速度和粘性摩擦力補(bǔ)償?shù)那梆佈a(bǔ)償器,并對(duì)其工作原理和穩(wěn)定性進(jìn)行了分析。建立驅(qū)動(dòng)分支動(dòng)力學(xué)模型,通過S曲線跟蹤響應(yīng)對(duì)控制系統(tǒng)性能進(jìn)行驗(yàn)證。使用Simulink和SimMechanics分別建立調(diào)整機(jī)構(gòu)的多軸運(yùn)動(dòng)控制系統(tǒng)和機(jī)構(gòu)模型,通過圓軌跡動(dòng)態(tài)跟蹤對(duì)控制系統(tǒng)的跟蹤精度進(jìn)行了仿真分析。 提出調(diào)整機(jī)構(gòu)姿態(tài)精度監(jiān)測(cè)方法并給出誤差超差判別公式。通過對(duì)磁尺回零和回零傳感器回零的原理進(jìn)行分析,提出利用磁尺和回零傳感器相互校正實(shí)現(xiàn)零點(diǎn)重建的方法,并對(duì)零點(diǎn)重建精度進(jìn)行實(shí)驗(yàn)分析。根據(jù)機(jī)構(gòu)自由度數(shù)大于任務(wù)自由度數(shù)的特點(diǎn),提出基于冗余自由度的調(diào)整機(jī)構(gòu)容錯(cuò)策略,并分析容錯(cuò)后機(jī)構(gòu)的工作空間。提出不規(guī)則工作空間邊界的數(shù)字化識(shí)別方法,以擴(kuò)大機(jī)構(gòu)的工作范圍。 通過對(duì)調(diào)整機(jī)構(gòu)功能需求分析,采用模塊化思想設(shè)計(jì)包含伺服驅(qū)動(dòng)單元、直線運(yùn)動(dòng)單元、低壓控制單元和運(yùn)動(dòng)控制單元的電氣控制系統(tǒng)。通過COM組件技術(shù)、ActiveX控件技術(shù)和動(dòng)態(tài)鏈接庫(kù)技術(shù)設(shè)計(jì)調(diào)整機(jī)構(gòu)的軟件系統(tǒng),并利用CUDA并行計(jì)算技術(shù)進(jìn)行調(diào)整機(jī)構(gòu)軌跡規(guī)劃,大大提高系統(tǒng)的實(shí)時(shí)性。建立Client/Server網(wǎng)絡(luò)控制結(jié)構(gòu),通過TCP/IP協(xié)議實(shí)現(xiàn)調(diào)整系統(tǒng)的遠(yuǎn)程控制。 參考國(guó)標(biāo)GB/T1741.2-2000中數(shù)控機(jī)床重復(fù)定位精度檢測(cè)和評(píng)定方法,提出一種包含耦合重復(fù)定位精度的并聯(lián)機(jī)構(gòu)重復(fù)定位精度測(cè)量和評(píng)定方法,并使用激光跟蹤儀對(duì)機(jī)構(gòu)的重復(fù)定位精度進(jìn)行測(cè)量分析。且對(duì)驅(qū)動(dòng)分支和調(diào)整機(jī)構(gòu)的動(dòng)態(tài)跟蹤精度分別進(jìn)行測(cè)試和分析,對(duì)基于冗余自由度的調(diào)整機(jī)構(gòu)容錯(cuò)策略的可行性進(jìn)行實(shí)驗(yàn)驗(yàn)證。
[Abstract]:The Stewart parallel mechanism is used to adjust the position and pose of the sub-plane for the 65m radio telescope to correct the pointing error and to convert the feed. The stability, accuracy and rapidity of the adjustment mechanism are improved in the light of how to improve the stability, accuracy and rapidity of the adjustment mechanism. The control system of the adjusting mechanism is designed and the control strategy is analyzed theoretically and experimentally. The main contents are as follows: The mapping relationship between the generalized coordinates of the system and the moving platform as well as the velocity and acceleration of the driving branch is analyzed. The partial velocity and the angular velocity of each component are calculated. The velocity and acceleration of each component caused by the motion of the base are analyzed. The inertial force of each component caused by the motion of the base is obtained. The Kane method with high real-time characteristics is used to model the dynamic model of the adjusting mechanism under the fixed and moving conditions of the base respectively. By using numerical analysis and Adams software simulation, the dynamic performance of the system is compared and analyzed. On the basis of PID feedback control, a feedforward compensator is designed to compensate for velocity, acceleration and viscous friction. The principle and stability of the feedforward compensator are analyzed, and the dynamic model of driving branch is established. The performance of the control system is verified by the S-curve tracking response. The multi-axis motion control system and the mechanism model of the adjusting mechanism are established by using Simulink and SimMechanics, respectively. The tracking accuracy of the control system is simulated and analyzed by circle trajectory dynamic tracking. In this paper, the attitude accuracy monitoring method of adjusting mechanism is put forward, and the discriminant formula of error overshoot is given. The principle of zero return of magnetic ruler and zero return sensor is analyzed. A method of 00:00 reconstruction using magnetic ruler and zero return sensor is proposed, and the precision of 00:00 reconstruction is analyzed experimentally. According to the characteristics that the degree of freedom of mechanism is greater than the number of freedom of task. A fault-tolerant strategy based on redundant degrees of freedom is proposed, and the workspace of the mechanism after fault tolerance is analyzed. A digital recognition method of irregular workspace boundary is proposed to enlarge the working range of the mechanism. By analyzing the functional requirements of the adjusting mechanism, the modular design includes servo drive unit and linear motion unit. The electric control system of low voltage control unit and motion control unit. The software system of adjusting mechanism is designed by COM component technology and dynamic link library technology. The CUDA parallel computing technology is used to adjust the mechanism trajectory planning, which greatly improves the real-time performance of the system. The Client/Server network control structure is established. The remote control of adjusting system is realized by TCP/IP protocol. Refer to the national standard GB/T1741.2-2000 NC machine tool repeated positioning accuracy detection and evaluation method. A method for measuring and evaluating the accuracy of repeated positioning of parallel mechanism is presented. The laser tracker is used to measure and analyze the accuracy of the repeated positioning of the mechanism, and the dynamic tracking accuracy of the driving branch and the adjusting mechanism are tested and analyzed respectively. The feasibility of the fault-tolerant strategy of the adjustment mechanism based on redundant degrees of freedom is verified experimentally.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TH751;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閆彩霞;戰(zhàn)強(qiáng);陸震;;基于驅(qū)動(dòng)或結(jié)構(gòu)冗余的并聯(lián)機(jī)器人容錯(cuò)方法[J];北京航空航天大學(xué)學(xué)報(bào);2010年12期
2 王洪斌,王洪瑞,肖金壯;并聯(lián)機(jī)器人軌跡跟蹤積分變結(jié)構(gòu)控制的研究[J];燕山大學(xué)學(xué)報(bào);2003年01期
3 劉國(guó)璽;鄭元鵬;馮貞國(guó);;65m射電望遠(yuǎn)鏡天線地震安全性分析[J];電子機(jī)械工程;2011年02期
4 徐剛;楊世模;;Gough-Stewart平臺(tái)機(jī)構(gòu)的普適工作空間及其幾何求解[J];光學(xué)精密工程;2008年02期
5 榮譽(yù);金振林;曲夢(mèng)可;;六足步行機(jī)器人的并聯(lián)機(jī)械腿設(shè)計(jì)[J];光學(xué)精密工程;2012年07期
6 王靜;林榮坤;姚斌;楊博;盧杰;;彎絲機(jī)器人機(jī)械回零的研究與實(shí)現(xiàn)[J];裝備制造技術(shù);2012年01期
7 胡月明;數(shù)控機(jī)床的開機(jī)回零及其故障診斷[J];貴州工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年04期
8 ;上海將建亞洲最大射電天文望遠(yuǎn)鏡[J];光機(jī)電信息;2009年02期
9 趙杰,朱延河,蔡鶴皋;Delta型并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)正解幾何解法[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2003年01期
10 袁立鵬;趙克定;許宏光;;Stewart平臺(tái)鉸點(diǎn)工作空間的研究[J];航空學(xué)報(bào);2006年05期
,本文編號(hào):1440114
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1440114.html