個(gè)性化Web圖像檢索關(guān)鍵技術(shù)研究
[Abstract]:At present, with the rapid development of information and computer technology, the information resources in Internet increase rapidly, including some simple text data, and a lot of multimedia information, such as images, video and so on. Therefore, how to efficiently and accurately retrieve user interest information from massive Web image resources has become a hot research topic. At the same time, for Web image retrieval, most of the current search engines provide image retrieval services that do not take into account the difference of user needs. Therefore, with the rapid increase of the number of images in Web, a large amount of retrieval time will be consumed. Reduce the efficiency of image retrieval. So people hope to be able to get interested information resources in time, to provide personalized services for different needs. Aiming at the above problems and combining the characteristics of Web image retrieval, this paper puts forward the research of personalized Web image retrieval technology. Firstly, a personalized Web image retrieval algorithm based on user interest model is proposed in this paper, because the current information retrieval service does not consider the difference of users, which leads to low retrieval efficiency. Firstly, the formal definition of user interest model is given, and considering the problem that user interest will change with time, the novelty factor is introduced in this paper, which effectively combines short-term interest with long-term interest. Then we use the combination of explicit tracking and implicit tracking to study the interest of users in order to improve the interest information of users. The user interest model can provide users with personalized Web image retrieval service according to different users' different interests, which greatly improves the efficiency of image retrieval. Another key technical problem in personalized Web image retrieval is the migration of user interest, that is, the problem of information transfer between users with similar interests. At present, this technology is also called personalized recommendation. In order to solve this problem, this paper proposes a personalized user interest recommendation algorithm based on user interest model. This algorithm uses SVD technology and K-means clustering fusion to effectively overcome the sparse problem of scoring matrix data. At the same time, it effectively solves the problem of user interest transfer in personalized Web image retrieval, provides personalized recommendation services for new and old users, and greatly improves the speed and efficiency of users' retrieval of information of interest. Finally, a personalized Web image retrieval system supporting multi-modal query is completed, and the work of the thesis is summarized, and the problems that need to be further studied and improved in the future are given.
【學(xué)位授予單位】:東北林業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 向友君;謝勝利;;圖像檢索技術(shù)綜述[J];重慶郵電學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年03期
2 陳冬玲;王大玲;于戈;于芳;;基于PLSA方法的用戶興趣聚類(lèi)[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期
3 邱兆文;張?zhí)镂?;基于用戶多媒體數(shù)據(jù)管理模型的個(gè)性化圖像檢索[J];電子學(xué)報(bào);2008年09期
4 李春妍;王勇;;個(gè)性化服務(wù)中用戶興趣聚類(lèi)算法研究[J];信息技術(shù);2007年10期
5 邱兆文,張?zhí)镂?一種新的圖像顏色特征提取方法[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2004年12期
6 邱兆文;龐俊彪;張?zhí)镂?梁可;;圖像檢索中基于二次距離的相關(guān)反饋[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2006年09期
7 王惠鋒 ,孫正興 ,王箭;語(yǔ)義圖像檢索研究進(jìn)展[J];計(jì)算機(jī)研究與發(fā)展;2002年05期
8 張鋒;常會(huì)友;;使用BP神經(jīng)網(wǎng)絡(luò)緩解協(xié)同過(guò)濾推薦算法的稀疏性問(wèn)題[J];計(jì)算機(jī)研究與發(fā)展;2006年04期
9 葉志偉;夏彬;周欣;張彥超;;一種改進(jìn)的基于顏色直方圖的圖像檢索算法[J];吉首大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
10 楊小平,丁浩,黃都培;基于向量空間模型的中文信息檢索技術(shù)研究[J];計(jì)算機(jī)工程與應(yīng)用;2003年15期
相關(guān)博士學(xué)位論文 前2條
1 魯珂;流形學(xué)習(xí)方法在Web圖像檢索中的應(yīng)用研究[D];電子科技大學(xué);2006年
2 邱兆文;面向用戶的Web圖像檢索關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前1條
1 滕躍;基于用戶興趣的個(gè)性化WEB檢索[D];清華大學(xué);2004年
,本文編號(hào):2415123
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2415123.html