Agent技術(shù)在元搜索引擎中的應(yīng)用研究
[Abstract]:With the rapid development of Internet, the content of network information increases rapidly. How to obtain valuable information accurately and efficiently has become a topic that researchers and users pay more and more attention to. The existing independent search engine has the defects of small coverage of database and low recall rate. Meta search engine expands the range of retrieval by calling multiple independent search engines and improves the recall to a certain extent. However, the independent search engine returns a large number of duplicate redundant results, which leads to the increase of the burden of the display agent of the meta-search engine, the reduction of the system precision rate and the long response time. In order to solve this defect, this paper introduces Agent technology, makes full use of the characteristics of Agent's generation rationality, intelligence and autonomy, applies the Agent technology to the meta search engine, sets their respective advantages in web information mining and information retrieval. Improve the query performance and retrieval efficiency of meta-search engine. The main work of this paper is summarized as follows: 1. Introduce the related theoretical knowledge of Agent and MAS, as well as the concept of meta search engine, working principle and so on. This paper analyzes and summarizes the application status of Agent technology in meta search engine at home and abroad, and points out the shortcomings of traditional meta search engine. 2. Establish an intelligent meta-search engine system model based on reward mechanism. The system model creates the corresponding member Agent, for each member search engine separately and collects the query results of the member search engine by using the member Agent and does the corresponding processing. 3. A member search engine scheduling strategy based on reward mechanism is proposed, which adapts to the system model. The scheduling strategy fully considers the factors that affect the query performance of the meta search engine, and ranks the member search engines according to a certain reward mechanism, and gives priority to the most important member search engines. 4. A query result composition strategy based on reward mechanism is proposed, which is suitable for the system model. The synthesis strategy is aimed at the query result of the scheduled member search engine. According to the comprehensive matching degree between the query result and the query request, the query results are merged and sorted. 5. The cooperative communication among the Agent in the system is realized by using KQML language, and the system performance is analyzed and compared. It is proved that this intelligent meta search engine based on the reward mechanism has its recall rate. Precision rate and response time are better than traditional meta-search engine to some extent.
【學(xué)位授予單位】:河北工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP391.3;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉雙印;徐龍琴;沈玉利;;改進(jìn)小生境遺傳算法在元搜索引擎調(diào)度優(yōu)化中的研究[J];重慶師范大學(xué)學(xué)報(自然科學(xué)版);2008年03期
2 董紅斌,李濱麗,李洪峰;基于Mobile Agent的信息搜索技術(shù)[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報;2002年02期
3 汪曉巖,胡慶生,李斌,莊鎮(zhèn)泉;面向Internet的個性化智能信息檢索[J];計算機(jī)研究與發(fā)展;1999年09期
4 王黎明;黃厚寬;;一個基于多階段的多Agent多問題協(xié)商框架[J];計算機(jī)研究與發(fā)展;2005年11期
5 高堅;張偉;;多Agent系統(tǒng)中雙邊多指標(biāo)自動協(xié)商的ACEA算法[J];計算機(jī)研究與發(fā)展;2006年06期
6 常志明;毛新軍;王戟;齊治昌;;多Agent系統(tǒng)中軟構(gòu)件的動態(tài)綁定機(jī)制及其操作語義[J];計算機(jī)研究與發(fā)展;2007年05期
7 賀利堅;黃厚寬;張偉;;多Agent系統(tǒng)中信任和信譽(yù)系統(tǒng)研究綜述[J];計算機(jī)研究與發(fā)展;2008年07期
8 童向榮;黃厚寬;張偉;;一種基于案例的Agent多議題協(xié)商模型[J];計算機(jī)研究與發(fā)展;2009年09期
9 路海明,盧增祥,徐晉暉,李衍達(dá);基于Agent技術(shù)的個性化主動信息服務(wù)[J];計算機(jī)工程與應(yīng)用;1999年06期
10 陳俊杰,薛云,宋翰濤,陸玉昌,余雪麗;基于Agent的元搜索引擎的研究與設(shè)計[J];計算機(jī)工程與應(yīng)用;2003年10期
相關(guān)博士學(xué)位論文 前1條
1 呂琳;基于Multi-agent的協(xié)同制造資源共享的相關(guān)理論與技術(shù)研究[D];武漢理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前6條
1 彭喜化;基于Agent的元搜索引擎結(jié)果優(yōu)化研究[D];西南農(nóng)業(yè)大學(xué);2004年
2 楊剛?cè)A;基于Agent的個性化信息檢索系統(tǒng)研究[D];大連理工大學(xué);2005年
3 王平;多Agent系統(tǒng)中的信任模型研究[D];西南師范大學(xué);2005年
4 王小朋;基于代理的元搜索引擎的研究[D];遼寧工程技術(shù)大學(xué);2005年
5 孟文杰;元搜索引擎的調(diào)度策略研究[D];中國石油大學(xué);2007年
6 向丹;專業(yè)搜索引擎中的多Agent協(xié)調(diào)研究[D];西華大學(xué);2008年
,本文編號:2345181
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2345181.html