基于改進PageRank算法的醫(yī)學垂直搜索引擎的研究與實現(xiàn)
[Abstract]:In recent years, the Internet has gradually become an important platform for people to obtain medical health information, in which search engine provides great convenience in the process of searching medical information. However, the existing medical search engines still have some shortcomings in topic similarity judgment and web page sorting algorithms. Therefore, a vertical search engine oriented to medical field is constructed by improving the topic similarity judgment and PageRank algorithm. The main research contents and results are as follows: (1) choose the initial URL, to construct the subject thesaurus of medical field and study the spatial vector model. After crawling the web page, we distinguish the theme correlation from hyperlink, meta-information and thesaurus respectively, and effectively remove the page which is not related to the topic. The efficiency of search engine is greatly improved. (2) the PageRank algorithm and HITS algorithm are studied and analyzed in this paper. Because the PageRank algorithm is more efficient and the amount of computing data is larger, the PageRank algorithm is used as the sorting algorithm for web pages in this paper. Aiming at the shortcomings of PageRank algorithm, such as biased old web pages, average weight distribution, topic drift and so on, time feedback factor is introduced to improve the score of "new" web pages, and authoritative feedback factor is introduced to improve the weights of web pages. The theme correlation factor is introduced to suppress the "topic drift". (3) based on the above two research results, this paper designs a vertical search engine oriented to the medical field. When designing search engine, it is mainly divided into crawler module and retrieval service module. In addition, based on the high extensibility and plug-in mechanism of Nutch, this paper adds IKAnalyzer Chinese word Segmentation to improve the ability of search engine to process Chinese information. (4) finally, the project is deployed and verified. Experiments show that the vertical search engine can segment words by word, and the accuracy of word segmentation reaches 900.The crawler efficiency is improved by 8 percent after the page is judged by the similarity of topic, and the PageRank algorithm is improved. The accuracy of vertical search engine has improved obviously, and the precision rate of the top 10 results returned to users is more than 0.7.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.3
【參考文獻】
相關期刊論文 前10條
1 吳宏洲;;分詞技術的研究與應用——一種快速分詞的實現(xiàn)[J];電腦知識與技術;2015年06期
2 高慧;張濤;王付強;夏彬;;面向輿情發(fā)現(xiàn)系統(tǒng)的中文語料分詞研究[J];軟件導刊;2015年11期
3 萬曉松;王志海;原繼東;;基于稀疏矩陣面向論文索引排名的啟發(fā)式算法[J];計算機應用;2015年10期
4 程維剛;王寧;田勇;;基于關鍵詞匹配技術的相似試題檢測方法研究[J];北華航天工業(yè)學院學報;2015年03期
5 張吳波;史旅華;李貴榮;;全文檢索引擎Lucene系統(tǒng)模型與應用研究[J];軟件導刊;2015年06期
6 陳道存;劉斌;張鑫;;高校FTP搜索引擎的設計與實現(xiàn)[J];蚌埠學院學報;2015年03期
7 于娟;劉強;;主題網(wǎng)絡爬蟲研究綜述[J];計算機工程與科學;2015年02期
8 高翔;吳萬琴;;人工智能技術在搜索引擎中的應用[J];硅谷;2015年03期
9 張軍強;李煒;沈奇威;;一種爬蟲監(jiān)控系統(tǒng)的設計與實現(xiàn)[J];電信工程技術與標準化;2014年12期
10 胡宏偉;虞萍;周南;喬軍;;基于Lucene的文獻資料全文檢索系統(tǒng)的設計與實現(xiàn)[J];重慶理工大學學報(自然科學);2014年11期
相關碩士學位論文 前6條
1 王清霞;基于領域本體的垂直搜索引擎頁面排序算法的研究[D];蘭州理工大學;2014年
2 岑沛斯;基于文本分析的互聯(lián)網(wǎng)視頻搜索引擎技術研究[D];杭州電子科技大學;2013年
3 黃江平;基于Lucene的桌面搜索引擎的研究與應用[D];浙江理工大學;2012年
4 朱明強;基于詞典和詞頻分析的論壇語料未登錄詞識別研究[D];西南大學;2012年
5 李宜兵;基于搜索引擎網(wǎng)頁排序算法研究[D];沈陽理工大學;2011年
6 董祥千;搜索引擎設計分析與結果聚類改進[D];電子科技大學;2007年
,本文編號:2247438
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2247438.html