基于圖像內(nèi)容的反向圖片搜索引擎算法研究
[Abstract]:Reverse image search engine is a new type of image search engine, it can express users' search intention more intuitively, and can help users to realize search objectively. "search by map" has become the development direction of image search engine. In this paper, several typical image search algorithms are studied and analyzed, and the characteristics of each algorithm and the typical images suitable for the algorithm are discussed in depth. In order to adapt to the image search with rich content and complicated information, and to satisfy the user's demand for the accuracy of the search results, the algorithm is optimized. This paper mainly studies the content-based image retrieval algorithms, including color based image retrieval algorithm, striped image retrieval algorithm, shape based image retrieval algorithm and local feature invariant retrieval algorithm. The advantages and disadvantages of each algorithm in practical application are analyzed. An image retrieval algorithm based on multiple features is presented based on the analysis results. The accuracy and robustness of the image retrieval algorithm are improved. The main contents are as follows: (1) an improved image retrieval algorithm based on color features is proposed. The image retrieval algorithm based on color features is improved by using the advantages of HSI space in color representation and block extraction. Using the advantages of block algorithm in color spatial distribution, color histogram representation and image segmentation, image retrieval is more convenient and accurate. (2) for gray level co-occurrence matrix, edge histogram Hu invariant moment, Corner detection and other image retrieval algorithms based on bottom features are compared in order to facilitate their application in multi-feature based image retrieval. (3) synthesizing the similarity of the image retrieval algorithms based on the underlying features, the weighted multi-feature image retrieval algorithm and the multi-feature fusion algorithm are given. (4) the experimental results are statistically analyzed. The results show that the multi-feature based image retrieval algorithm is faster and more accurate than the previous one based on lower level features. More suitable for image content based reverse image search engine.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 茹立云,彭瀟,蘇中,馬少平;基于內(nèi)容圖像檢索中的特征性能評價(jià)[J];計(jì)算機(jī)研究與發(fā)展;2003年11期
2 戚紅梅;;基于內(nèi)容的圖像信息資源檢索技術(shù)進(jìn)展研究[J];情報(bào)雜志;2008年01期
3 劉忠偉,章毓晉;十種基于顏色特征圖像檢索算法的比較和分析[J];信號處理;2000年01期
4 李國輝,曹莉華,柳偉,王辰,薛峰,熊華;多媒體信息查詢和檢索系統(tǒng)MIRc[J];小型微型計(jì)算機(jī)系統(tǒng);1999年09期
相關(guān)碩士學(xué)位論文 前10條
1 李帥豪;基于多特征的圖像檢索技術(shù)研究[D];湖北工業(yè)大學(xué);2011年
2 陳重旭;基于分塊加權(quán)—顏色特征的圖像檢索[D];吉林大學(xué);2011年
3 焦曉軍;基于綜合多特征的圖像檢索方法研究[D];重慶大學(xué);2011年
4 鄧娟;基于內(nèi)容的圖像數(shù)據(jù)庫檢索中關(guān)鍵技術(shù)的研究[D];東華大學(xué);2005年
5 余芳;基于顏色特征的圖像檢索技術(shù)研究[D];中國石油大學(xué);2007年
6 陳志雄;基于圖像配準(zhǔn)的SIFT算法研究與實(shí)現(xiàn)[D];武漢理工大學(xué);2008年
7 秦小鐵;基于語義的圖像檢索方法研究[D];西南大學(xué);2010年
8 翟劍鋒;基于多特征的圖像檢索系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2010年
9 黃艷麗;基于整體局部顏色特征和紋理特征的圖像檢索算法研究[D];蘭州大學(xué);2012年
10 馬辰;圖像特征點(diǎn)匹配算法的研究[D];華北電力大學(xué);2012年
,本文編號:2159645
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2159645.html