不同洪水預(yù)報(bào)模型在拒馬河流域的應(yīng)用對比分析
發(fā)布時(shí)間:2018-09-11 21:43
【摘要】:拒馬河水系為海河流域防洪重點(diǎn)區(qū)域,預(yù)報(bào)難度大,精度要求高。根據(jù)海河流域拒馬河水系歷史水文資料,分別采用新安江模型、增加超滲的新安江模型、河北雨洪模型和人工神經(jīng)網(wǎng)絡(luò)模型,對1956年、1963年和2012年暴雨洪水進(jìn)行預(yù)報(bào)對比分析,研究結(jié)果表明:4種模型均可應(yīng)用于暴雨強(qiáng)度大、降雨歷時(shí)長的歷史洪水模擬,洪峰流量模擬相對誤差均小于20%,尤以人工神經(jīng)網(wǎng)絡(luò)模型模擬精度最高,4種模型在干旱半干旱地區(qū)均具有推廣應(yīng)用價(jià)值。
[Abstract]:The water system of Juma River is the key area of flood control in Haihe River Basin, which is difficult to forecast and requires high precision. According to the historical hydrological data of the Jemma River system in the Haihe River Basin, the Xinanjiang model, the Xinanjiang model with increasing overseepage, the rain flood model of Hebei Province and the artificial neural network model are used to forecast and compare the heavy rain floods in 1956, 1963 and 2012. The results show that the four models can be applied to the historical flood simulation with heavy rainfall intensity and long rainfall duration. The relative errors of Hong Feng flow simulation are all less than 20. Especially the artificial neural network model has the highest simulation accuracy and the four models have the value of popularization and application in arid and semi-arid areas.
【作者單位】: 水利部水文局;河海大學(xué)水文水資源學(xué)院;
【分類號】:P338
本文編號:2237942
[Abstract]:The water system of Juma River is the key area of flood control in Haihe River Basin, which is difficult to forecast and requires high precision. According to the historical hydrological data of the Jemma River system in the Haihe River Basin, the Xinanjiang model, the Xinanjiang model with increasing overseepage, the rain flood model of Hebei Province and the artificial neural network model are used to forecast and compare the heavy rain floods in 1956, 1963 and 2012. The results show that the four models can be applied to the historical flood simulation with heavy rainfall intensity and long rainfall duration. The relative errors of Hong Feng flow simulation are all less than 20. Especially the artificial neural network model has the highest simulation accuracy and the four models have the value of popularization and application in arid and semi-arid areas.
【作者單位】: 水利部水文局;河海大學(xué)水文水資源學(xué)院;
【分類號】:P338
【相似文獻(xiàn)】
相關(guān)會議論文 前1條
1 高鵬杰;;Tennant法用于拒馬河生態(tài)基流量計(jì)算研究[A];中國水利學(xué)會2008學(xué)術(shù)年會論文集(上冊)[C];2008年
,本文編號:2237942
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2237942.html
最近更新
教材專著