高碾壓混凝土拱壩地震破壞機理模型試驗研究
[Abstract]:With the vigorous development of water conservancy in China, a large number of arch dams have been or are being built, and the seismic safety of arch dams is particularly important. Under strong earthquakes, the failure mechanism of high RCC arch dam is extremely complex and many factors affect it. Although numerical simulation has become the main way to study the mechanism of high dam strong earthquake damage, the dynamic model The test is still an important method, and the code for seismic design of hydraulic engineering of Hydropower Engineering (NB 35047-2015) stipulates that the dynamic model test should be carried out when the design of a class a dam with a degree of VIII and above and higher than 150m. The imitation real material, the model technology and the testing method of the dynamic model test of the high dam are still not enough. It is perfect, especially for the nonlinear behavior of arch dam structure joint under strong earthquake, the influence of the horizontal weak layer, the interaction of dam and reservoir water, and so on. In this paper, a series of experimental studies are carried out to explore the structural seams, the horizontal weak layers and the dam bank interaction under the strong earthquake of the arch dam, including the model material test. Research, damage monitoring technique, vibration table failure test and numerical simulation. The main contents are as follows: (1) a high density, low elastic modulus, low tensile strength and good brittleness of high dam model materials are developed. A series of tests on the constitutive relation of the uniaxial tension and compression of the model materials under different strain rates are carried out. The stress-strain curve equation of the model material under dynamic action, and the relationship between the ultimate strength, the strain of the peak stress, the modulus of elasticity, the modulus of elasticity, the Poisson's ratio, the energy absorption capacity and the strain rate are obtained, and the correlation between the strain rate and the prototype material is compared, which provides the material for the failure mechanism of the arch dam in the dynamic force model test of the high dam. Material parameters are provided and material parameters are provided for Numerical Research (second chapter). (2) a damage monitoring method for dynamic model test of high arch dam is developed to monitor dynamic stress and structural damage of high dam model. Before the model test, the positive piezoelectric effect is used to calibrate the sensor under the same loading rate. The damage index is defined by the root mean square index, and the effectiveness of the damage monitoring method is verified by pre test. On this basis, the distributed sensor network is embedded into the high dam model and the path time history damage index matrix is constructed to characterize the damage location and damage process of the model, and the feasibility of this method is verified by the model test. It is complementary to the traditional high dam model testing method, to improve the test precision of dynamic model test of arch dam and to reveal the law of damage and damage of the model (third chapter). (3) on the basis of the research of the model material research and damage monitoring technology, the structural seams and the horizontal weak layers are studied step by step through the failure test of the dynamic model of the high dam. The mechanism of earthquake damage and the effect of failure mode. The model is based on the elastic force gravity similarity criterion, and the sensitivity of the original model material mechanical characteristic is considered when the similarity relation is designed. The model transverse joint simulation considers the keyway, the induced seam simulation is based on the fracture mechanics theory, and the dynamic splitting test of the model material containing the weak layer is carried out at the same time. The results show that the structural joints can release the internal stress of the dam in the earthquake and improve the overall overload capacity of the arch dam. The existence of the weak layer does not significantly reduce the overloading capacity of the whole dam, and the main effect is the failure mode after the arch constraint is weakened and the beam position enters the cantilever beam loading mode. The test results enrich the dynamic model test of the high arch dam. The research content of the study provides a scientific basis for optimizing the seismic design of arch dams and evaluating the seismic safety of arch dams (fourth, fifth chapters). (4) using natural water to simulate the reservoir water, the dynamic response and failure modes of arch dams under the action of reservoir water are studied by using the dynamic model test method of arch dam. The present reservoir water makes the arch dam in preloading state, giving full play to the stress characteristics of the arch dam, which is more beneficial to the dam safety than that of the empty reservoir. Considering the similar relationship requirements and the actual conditions, the influence of the water density of the model reservoir on the test results is studied by the numerical analysis method. The nonlinear constitutive model of the numerical model dam is selected to select the concrete damage force. The material parameters are obtained by the mechanical performance test. The cohesion unit is simulated by the cohesive unit, and the numerical model is checked by the results of the empty reservoir test. The numerical results show that the water density of the different reservoirs is mainly influenced by the distribution of the main stress in the upper reaches of the dam, and the effect on the failure mode can be ignored. When using liquids that satisfy similar relations, natural water simulation is an effective method (the sixth chapter).
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TV642.4
【相似文獻】
相關(guān)期刊論文 前10條
1 ;最高的碾壓混凝土拱壩[J];水利科技;2000年03期
2 黃達海;碾壓混凝土拱壩的發(fā)展[J];水利水電科技進展;2000年03期
3 李春敏,李毓林;析我國碾壓混凝土拱壩技術(shù)[J];水利水電技術(shù);2001年11期
4 劉光廷,李鵬輝,謝樹南,張富德;碾壓混凝土拱壩的鉸結(jié)拱研究[J];水利學(xué)報;2002年06期
5 韓曉鳳,張仲卿,張偉;高碾壓混凝土拱壩超載的有限元分析[J];紅水河;2002年03期
6 吳劼高;當(dāng)前世界上已建及在建的碾壓混凝土拱壩[J];河海大學(xué)學(xué)報(自然科學(xué)版);2002年04期
7 沈崇剛;沙牌碾壓混凝土拱壩——一座里程碑的工程[J];水電站設(shè)計;2003年04期
8 羅洪波,崔進;大花水水電站碾壓混凝土拱壩設(shè)計[J];貴州水力發(fā)電;2005年01期
9 韋天琴,劉海成,宋加國;碾壓混凝土拱壩開裂研究的進展[J];水力發(fā)電;2005年03期
10 陳秋華;;由成都勘測設(shè)計研究院完成的《碾壓混凝土拱壩筑壩配套技術(shù)研究》榮獲2005年國家科技進步二等獎[J];水電站設(shè)計;2006年02期
相關(guān)會議論文 前10條
1 王樂伯;陳宗卿;;普定碾壓混凝土拱壩筑壩新技術(shù)研究[A];96’碾壓混凝土筑壩技術(shù)交流會論文集[C];1996年
2 陳秋華;;碾壓混凝土拱壩成縫新技術(shù)[A];中國水力發(fā)電工程學(xué)會2003年度學(xué)術(shù)年會碾壓混凝土筑壩技術(shù)交流論文匯編[C];2003年
3 羅洪波;崔進;;大花水水電站碾壓混凝土拱壩設(shè)計[A];紀(jì)念貴州省水力發(fā)電工程學(xué)會成立20周年論文選集[C];2005年
4 李春敏;李毓林;;析我國碾壓混凝土拱壩技術(shù)[A];碾壓混凝土筑壩技術(shù)交流論文匯編[C];2003年
5 陳秋華;;碾壓混凝土拱壩成縫新技術(shù)[A];碾壓混凝土筑壩技術(shù)交流論文匯編[C];2003年
6 李春敏;李毓林;;析我國碾壓混凝土拱壩技術(shù)[A];中國水力發(fā)電工程學(xué)會2003年度學(xué)術(shù)年會碾壓混凝土筑壩技術(shù)交流論文匯編[C];2003年
7 劉炎生;黃巍;;沙牌碾壓混凝土拱壩施工新技術(shù)、新成果[A];中國水力發(fā)電工程學(xué)會2003年度學(xué)術(shù)年會碾壓混凝土筑壩技術(shù)交流論文匯編[C];2003年
8 李春敏;;我國碾壓混凝土拱壩發(fā)展概述[A];2004年全國碾壓混凝土壩筑壩技術(shù)交流會論文集[C];2004年
9 馬思烈;羅健;;沙壩水電站碾壓混凝土拱壩設(shè)計[A];2004年全國碾壓混凝土壩筑壩技術(shù)交流會論文集[C];2004年
10 羅洪波;崔進;;大花水碾壓混凝土拱壩設(shè)計[A];2004年全國碾壓混凝土壩筑壩技術(shù)交流會論文集[C];2004年
相關(guān)重要報紙文章 前8條
1 王啟翔;匯集25項新技術(shù) 沙牌碾壓混凝土拱壩 最高拱壩上演創(chuàng)新秀[N];中國水利報;2005年
2 記者 朱彤 通訊員 劉疆;最高碾壓混凝土拱壩在新疆建成[N];科技日報;2000年
3 湯洪潔;白蓮崖水庫解決高碾壓混凝土拱壩施工期溫度應(yīng)力問題[N];中國水利報;2008年
4 通訊員 龐卡;中國水電建設(shè)集團兩項技術(shù)研究獲大獎[N];中國電力報;2006年
5 陳改新;碾壓混凝土拱壩接縫重復(fù)灌漿技術(shù)[N];中國水利報;2005年
6 中國水利學(xué)會水工結(jié)構(gòu)專業(yè)委員會;結(jié)構(gòu)工程技術(shù)成果豐碩[N];中國水利報;2003年
7 實習(xí)記者 呂露英;兩個世界第一 20年集體攻關(guān)[N];新清華;2010年
8 本報記者 江東洲;生命不息 追求不止[N];科技日報;2007年
相關(guān)博士學(xué)位論文 前3條
1 張宇;高碾壓混凝土拱壩地震破壞機理模型試驗研究[D];大連理工大學(xué);2016年
2 鄭家祥;高碾壓混凝土拱壩施工過程仿真與優(yōu)化研究[D];天津大學(xué);2007年
3 劉海成;碾壓混凝土拱壩溫度應(yīng)力與誘導(dǎo)縫開裂分析[D];大連理工大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 苑鑫;沙牌碾壓混凝土拱壩損傷破壞的風(fēng)險分析[D];大連理工大學(xué);2016年
2 王海青;碾壓混凝土拱壩溫度應(yīng)力仿真分析[D];河海大學(xué);2006年
3 張旭輝;碾壓層縫對碾壓混凝土拱壩承載能力的影響研究[D];廣西大學(xué);2006年
4 夏雨;碾壓混凝土拱壩施工仿真分析方法研究[D];廣西大學(xué);2006年
5 紀(jì)新帥;碾壓混凝土拱壩施工期溫度場應(yīng)力場仿真分析[D];西北農(nóng)林科技大學(xué);2012年
6 李紅;李家河碾壓混凝土拱壩溫度應(yīng)力仿真及溫控防裂研究[D];西安理工大學(xué);2010年
7 王永新;高碾壓混凝土拱壩仿真分析與優(yōu)化研究[D];廣西大學(xué);2005年
8 劉代平;高碾壓混凝土拱壩仿真分析方法研究[D];廣西大學(xué);2006年
9 張曉飛;碾壓混凝土拱壩溫度應(yīng)力場仿真分析[D];西安理工大學(xué);2004年
10 劉智;碾壓混凝土拱壩有限元仿真分析及防裂措施[D];南昌大學(xué);2012年
,本文編號:2152192
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2152192.html