天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

溫降作用下大型箱型倒虹吸橫向溫度應(yīng)力計算方法研究

發(fā)布時間:2018-07-27 18:49
【摘要】:我國水資源分布的總體趨勢是南多北少,為緩解這一問題,提升國民經(jīng)濟(jì)發(fā)展動力,國家實施南水北調(diào)工程。南水北調(diào)中線工程于2014年通水,有效緩解華北地區(qū)水資源短缺的現(xiàn)狀。倒虹吸作為交叉建筑物,在南水北調(diào)中使用較多,為滿足輸水量的需要,大截面多箱室預(yù)應(yīng)力混凝土倒虹吸結(jié)構(gòu)由此誕生,對于埋入式混凝土倒虹吸結(jié)構(gòu),溫度應(yīng)力不被重視,而對其在施工時的溫度應(yīng)力關(guān)注較多,近來已有文獻(xiàn)指出溫度荷載對埋入式混凝土倒虹吸結(jié)構(gòu)的影響,為此筆者認(rèn)為有必要關(guān)注其溫度應(yīng)力問題。筆者先從簡單的單箱室倒虹吸開始,查閱相關(guān)文獻(xiàn),在假定倒虹吸板為半無限厚板,氣溫變化為諧波變化的條件下,得到混凝土倒虹吸溫度場的解析解答,取溫差為工程控制荷載,由溫度場的解析解答簡化所得到的溫差分布函數(shù),和混凝土鐵路橋梁規(guī)范中的溫差分布函數(shù)具有相同的函數(shù)類型,這說明了混凝土結(jié)構(gòu)熱傳導(dǎo)的共性問題,因此筆者將橋梁上面的溫差分布函數(shù)引用到倒虹吸上。由已知的溫差分布函數(shù),計算倒虹吸溫度應(yīng)力,混凝土倒虹吸溫度應(yīng)力分為板厚范圍內(nèi)的自約束應(yīng)力和結(jié)構(gòu)本身的框架約束應(yīng)力,其總應(yīng)力是這兩部分應(yīng)力之和。自約束應(yīng)力計算公式推導(dǎo)和框架約束應(yīng)力推導(dǎo)可詳見文章相關(guān)章節(jié),這里不再累述。有了單箱室倒虹吸的溫度應(yīng)力計算公式,筆者依次對雙箱室、三箱室倒虹吸溫度應(yīng)力計算公式進(jìn)行了推導(dǎo)。在計算多箱室倒虹吸框架約束應(yīng)力時,結(jié)構(gòu)超靜定次數(shù)較高,筆者根據(jù)結(jié)構(gòu)力學(xué)計算得出,多箱室倒虹吸溫度應(yīng)力的計算可以簡化成單個箱室的溫度應(yīng)力計算,這一結(jié)論大大簡化了多箱室倒虹吸溫度應(yīng)力計算,提高了計算公式的實用性。筆者對雙箱室、三箱室倒虹吸,分別進(jìn)行了實例計算,并用ANSYS模擬,通過計算結(jié)果和有限元結(jié)果對比發(fā)現(xiàn),不管是雙箱室倒虹吸還是三箱室倒虹吸,其計算結(jié)果均能夠和有限元結(jié)果吻合,可以推廣使用;實例計算還發(fā)現(xiàn),多箱室預(yù)應(yīng)力混凝土倒虹吸結(jié)構(gòu)在施工完成之后,在冬季降溫期將產(chǎn)生頗大的溫度應(yīng)力,威脅結(jié)構(gòu)安全,應(yīng)當(dāng)在運營過程中加強結(jié)構(gòu)安全的監(jiān)管。文章最后采用公路橋梁上的折線溫差分布函數(shù),推導(dǎo)了折線溫差分布下多箱室混凝土倒虹吸結(jié)構(gòu)的溫度應(yīng)力計算公式,并采相同的工程實例進(jìn)行了計算,對比指數(shù)溫差分布函數(shù)計算結(jié)果,兩者計算結(jié)果相差在10%以內(nèi),筆者認(rèn)為該計算方法可以推廣使用。
[Abstract]:The general trend of water resources distribution in China is that the water resources in the south are less than in the north. In order to alleviate this problem and promote the motive force of the development of the national economy, the state has implemented the South-to-North Water transfer Project. South-to-North Water diversion Project opened water in 2014, effectively alleviating the water shortage in North China. As a cross structure, inverted siphon is widely used in the South-to-North Water transfer Project. In order to meet the need of water delivery, the inverted siphon structure of prestressed concrete with large section and multi-chamber is born, and the temperature stress of the buried inverted siphon structure is not paid much attention to. Recently, it has been pointed out that the influence of temperature load on the inverted siphon structure of embedded concrete. Therefore, the author thinks that it is necessary to pay attention to the temperature stress of the inverted siphon structure. The author begins with the simple inverted siphon in a single chamber and looks up the relevant literature. Under the assumption that the inverted siphon plate is a semi-infinite thick slab and the temperature change is harmonic, the analytical solution of the inverted siphon temperature field of concrete is obtained. Taking the temperature difference as the engineering control load, the temperature difference distribution function simplified by the analytic solution of the temperature field has the same function type as the temperature difference distribution function in the concrete railway bridge code. This explains the common problem of heat conduction in concrete structure, so the temperature distribution function above the bridge is applied to the inverted siphon. Based on the known temperature difference distribution function, the inverted siphon temperature stress is calculated. The concrete inverted siphon temperature stress is divided into the self-confined stress in the thickness range of the plate and the frame confined stress in the structure itself, and the total stress is the sum of the two stresses. The derivation of the formula of self-constrained stress and the derivation of frame constrained stress can be found in the relevant chapters of the article, which will not be restated here. With the calculation formula of temperature stress of inverted siphon in single chamber, the author deduced the formula of temperature stress of inverted siphon in two chambers and three chambers in turn. In the calculation of confinement stress of inverted siphon frame in multi-box chambers, the number of statically indeterminate structures is high. According to the calculation of structural mechanics, the calculation of inverted siphon temperature stress in multi-box chambers can be simplified into the calculation of temperature stress in a single chamber. This conclusion greatly simplifies the calculation of temperature stress of inverted siphon in multi-box chambers and improves the practicability of the formula. The author calculates the inverted siphon of two and three chambers respectively, and simulates it with ANSYS. The results are compared with the results of finite element method, and it is found that, whether it is the inverted siphon in the double chamber or the inverted siphon in the three chambers, The calculated results are in good agreement with the finite element results and can be widely used. It is also found that after the completion of the construction of the inverted siphon structure of multi-chamber prestressed concrete, there will be considerable temperature stress during the cooling period in winter. Threats to structural security should be strengthened during the operational process of structural safety supervision. In the end, the formula of temperature stress of concrete inverted siphon structure of multi-box concrete under the distribution of broken line temperature difference is deduced by using the distribution function of broken line temperature difference on highway bridge, and the same engineering example is taken to calculate the temperature stress. Compared with the calculated results of exponential temperature distribution function, the difference between the two results is less than 10%. The author thinks that this method can be popularized.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TV672.5

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 季日臣;嚴(yán)娟;蘇小鳳;;混凝土箱形渡槽日照高溫下結(jié)構(gòu)安全研究[J];南水北調(diào)與水利科技;2013年06期

2 孫素艷;李原園;楊麗英;;我國水資源面臨形勢及可持續(xù)利用對策研究[J];人民長江;2011年18期

3 許四法;張豪;;農(nóng)業(yè)灌溉水渠防滲土工膜的溫度敏感性及張拉力評價[J];農(nóng)業(yè)工程學(xué)報;2011年04期

4 趙山;趙湘育;吳澤玉;;矩形渡槽在寒潮作用下溫度應(yīng)力分析[J];人民黃河;2010年04期

5 王正中;蘆琴;郭利霞;楊成有;楊富元;;基于晝夜溫度變化的混凝土襯砌渠道凍脹有限元分析[J];農(nóng)業(yè)工程學(xué)報;2009年07期

6 朱伯芳;;關(guān)于混凝土壩的幾個新理念[J];水利學(xué)報;2008年10期

7 朱伯芳;楊萍;;混凝土的半熟齡期——改善混凝土抗裂能力的新途徑[J];水利水電技術(shù);2008年05期

8 王正中;李甲林;陳濤;郭利霞;姚汝方;;弧底梯形渠道砼襯砌凍脹破壞的力學(xué)模型研究[J];農(nóng)業(yè)工程學(xué)報;2008年01期

9 李學(xué)軍;費良軍;任之忠;;大型U型渠道渠基季節(jié)性凍融水分運移特性研究[J];水利學(xué)報;2007年11期

10 季日臣;夏修身;陳堯隆;房振葉;;驟然降溫作用下混凝土箱形渡槽橫向溫度應(yīng)力分析[J];水利水電技術(shù);2007年01期

相關(guān)博士學(xué)位論文 前2條

1 武立群;混凝土箱梁和空心高墩溫度場及溫度效應(yīng)研究[D];重慶大學(xué);2012年

2 劉西軍;大體積混凝土溫度場溫度應(yīng)力仿真分析[D];浙江大學(xué);2005年

相關(guān)碩士學(xué)位論文 前1條

1 李彬彬;大體積混凝土溫度應(yīng)力有限元分析[D];西安建筑科技大學(xué);2007年

,

本文編號:2148814

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2148814.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b143e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com