基于CFD的水電站廠房水力振源特性及精確施加方法研究
本文選題:水力振源 + 水電站廠房 ; 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:水力振源是引起廠房結(jié)構(gòu)振動的最重要因素,也是最難以描述和模擬的因素。由于水輪機(jī)流道內(nèi)部流動的復(fù)雜性,單一構(gòu)件內(nèi)的流動特性不能完整體現(xiàn)整個流道的流動規(guī)律和本質(zhì)。論文綜合分析了目前對于水電站廠房水力振源特性及施加方法研究的現(xiàn)狀,在基于CFD的水力振源特性研究基礎(chǔ)上,研究了水輪機(jī)流道,尤其是壁面處的水力振源規(guī)律,提出了水力振源的精確模擬施加方法。本文建立了全流道非定常湍流數(shù)值模型,基于SST雙方程湍流模型實(shí)現(xiàn)了全流道非定常湍流計算,分析了正常運(yùn)行工況下蝸殼、尾水管壁面的壓力脈動分布特征,總結(jié)了水力振源幅值、頻率及規(guī)律。在CFD計算基礎(chǔ)上,采用諧響應(yīng)分析,在正常運(yùn)行工況下,依據(jù)水力振源幅值、頻率分布特征,對蝸殼壁面進(jìn)行了區(qū)域劃分,提出了五種簡化施加方案,廠房動響應(yīng)數(shù)值計算結(jié)果表明,將各區(qū)域典型代表點(diǎn)的壓力脈動幅頻數(shù)據(jù)作為簡諧面壓力施加于區(qū)域面,接近水力振源真實(shí)作用情況時,得到的廠房振動響應(yīng)較傳統(tǒng)全流道單一振幅、頻率面壓力施加方法更大。由于流體計算與廠房結(jié)構(gòu)網(wǎng)格尺度的差異,通過ANSYS二次開發(fā),編制CFD計算壓力脈動結(jié)果導(dǎo)入廠房結(jié)構(gòu)程序,通過流體域與結(jié)構(gòu)域中蝸殼、尾水管壁面各點(diǎn)坐標(biāo)位置建立壓力脈動時程一一對應(yīng)規(guī)則。利用SFFUN命令實(shí)現(xiàn)了流道壁面各節(jié)點(diǎn)各時刻均按CFD結(jié)果如實(shí)模擬的壓力脈動實(shí)時精確模擬施加方法,并將所得廠房響應(yīng)情況與以典型點(diǎn)為參考的點(diǎn)而轉(zhuǎn)換施加方法進(jìn)行對比。結(jié)果表明,本文提出的基于CFD的脈動壓力精確模擬施加方法考慮了流道各點(diǎn)水力振源的幅值、頻率差異的影響,廠房響應(yīng)更趨于合理。
[Abstract]:The hydraulic vibration source is the most important factor which causes the vibration of the structure of the plant. It is also the most difficult factor to describe and simulate. Due to the complexity of the flow in the turbine runner, the flow characteristics in the single component can not fully reflect the flow law and the essence of the whole flow channel. On the basis of the study on the characteristics of the hydraulic vibration source based on CFD, this paper studies the law of hydraulic vibration source of the hydraulic turbine, especially the wall, and puts forward the accurate simulation method of the hydraulic source. In this paper, a numerical model of the unsteady turbulent flow in the full flow channel is set up. Based on the SST double equation turbulence model, the unsteady flow path is realized. The pressure fluctuation distribution characteristics of the spiral case and the tube wall under normal operating conditions are analyzed. The amplitude, frequency and law of the hydraulic source are summarized. On the basis of the CFD calculation, the harmonic response analysis is used to divide the wall surface of the volute on the basis of the characteristics of the amplitude and frequency distribution of the hydraulic source. Five simplified application schemes are applied. The numerical results of the dynamic response of the workshop show that the vibration response of the typical representative points of the representative points of the region is applied to the region surface as the simple harmonic surface pressure. The vibration response of the workshop is more than the single amplitude of the traditional full channel and the method of applying the frequency surface pressure. The difference between the fluid calculation and the scale of the grid structure of the workshop is made. Through the development of the ANSYS two times, the pressure pulsation result of the CFD calculation is introduced into the structural program of the workshop, and the one-to-one corresponding rules of the pressure pulsation time history are established through the fluid domain and the spiral case in the structure domain and the coordinates of the wall of the tailpipe wall. Each node of the wall surface of the flow channel is realized with the SFFUN command. The real time and accurate simulation of pressure pulsation is simulated on the basis of the CFD results, and the response of the workshop is compared with that of a point with the typical point as a reference point. The results show that the method of accurate simulation of the pulsating pressure based on the CFD is taken into consideration of the amplitude and frequency difference of the hydraulic sources at the various points of the channel. With the influence of the difference, the response of the plant is more reasonable.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TV312
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭克敏;張建蓉;;水輪機(jī)尾水管導(dǎo)流板減振分析[J];水電能源科學(xué);2017年03期
2 耿聃;宋志強(qiáng);蘇晨輝;;水力脈動對水電站機(jī)組及廠房結(jié)構(gòu)的影響研究與振動控制綜述[J];長江科學(xué)院院報;2016年10期
3 尚銀磊;李德玉;歐陽金惠;;大型水電站廠房振動問題研究綜述[J];中國水利水電科學(xué)研究院學(xué)報;2016年01期
4 喬文濤;王玲花;;基于CFD的水輪機(jī)內(nèi)流場分析研究綜述[J];吉林水利;2015年07期
5 董開松;趙耀;李臻;劉秀良;李志敏;趙煒;;貫流式水輪機(jī)定常流動分析[J];大電機(jī)技術(shù);2015年01期
6 季斌;羅先武;西道弘;許洪元;;混流式水輪機(jī)渦帶工況下兩級動靜干涉及其壓力脈動傳播特性分析[J];水力發(fā)電學(xué)報;2014年01期
7 徐偉;馬震岳;職保平;;水壓脈動能量傳導(dǎo)對水電站廠房墻體影響分析[J];水力發(fā)電學(xué)報;2013年02期
8 張存慧;馬震岳;周述達(dá);張運(yùn)良;;大型水電站廠房結(jié)構(gòu)流固耦合分析[J];水力發(fā)電學(xué)報;2012年06期
9 郭濤;張立翔;姚激;;水輪機(jī)流道壓力脈動誘發(fā)廠房振動分析[J];地震工程與工程振動;2011年06期
10 黃劍峰;張立翔;王文全;姚激;;混流式水輪機(jī)三維非定常流分離渦模型的精細(xì)模擬[J];中國電機(jī)工程學(xué)報;2011年26期
相關(guān)博士學(xué)位論文 前2條
1 趙鳳遙;水電站廠房結(jié)構(gòu)及水力機(jī)械動力反分析[D];大連理工大學(xué);2006年
2 沈可;水電站廠房結(jié)構(gòu)振動研究[D];廣西大學(xué);2002年
相關(guān)碩士學(xué)位論文 前1條
1 王浩;葉片流固耦合振動分析方法研究[D];南京航空航天大學(xué);2012年
,本文編號:2074761
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2074761.html