雅礱江牙根二級水電站進水口邊坡穩(wěn)定性研究
本文選題:牙根水電站 + 巖體質(zhì)量。 參考:《成都理工大學(xué)》2014年碩士論文
【摘要】:邊坡穩(wěn)定性問題是水利水電工程建設(shè)的主要工程地質(zhì)問題之一,研究邊坡的穩(wěn)定性對于工程施工地順利開展與建成后充分發(fā)揮工程效應(yīng),具有至關(guān)重要的意義。本文結(jié)合雅礱江牙根二級水電站邊坡穩(wěn)定性研究課題,在大量現(xiàn)場地質(zhì)調(diào)研基礎(chǔ)上,分析了電站進水口邊坡巖體結(jié)構(gòu)特征,對邊坡巖體風(fēng)化卸荷分帶及巖體質(zhì)量分級進行了研究,,結(jié)合邊坡出現(xiàn)的變形破壞現(xiàn)象,建立了邊坡相應(yīng)的變形破壞模式。利用剛體極限平衡法與數(shù)值模擬方法對邊坡開挖過程中的應(yīng)力和位移特征進行了分析,系統(tǒng)地評價了工程邊坡的穩(wěn)定性,得到如下主要認識。 (1)邊坡巖體巖性為燕山早期黑云母二長花崗巖,邊坡主要發(fā)育三組陡傾角結(jié)構(gòu)面與一組緩傾角結(jié)構(gòu)面。三組陡傾角結(jié)構(gòu)面與坡面走向大角度相交,而緩傾角結(jié)構(gòu)面以傾向坡內(nèi)產(chǎn)出。受巖體結(jié)構(gòu)控制,自然邊坡總體變形較弱,整體穩(wěn)定性較好,變形主要表現(xiàn)為局部沿陡傾角結(jié)構(gòu)面的卸荷拉裂變形,受緩傾角結(jié)構(gòu)面與陡傾角結(jié)構(gòu)面組合的墜落式崩塌,以及上游側(cè)邊坡巖體的板裂化傾倒變形。 (2)根據(jù)巖體風(fēng)化卸荷特征與巖體結(jié)構(gòu)特征結(jié)合RMR與CSMR法對邊坡巖體質(zhì)量進行劃分,得出邊坡巖體主要為II級巖體,占邊坡巖體總量的50%,主要分布在無風(fēng)化與無卸荷巖體內(nèi);III級巖體占邊坡巖體總量的30%,主要為弱下風(fēng)化巖體;IV級巖體占邊坡巖體總量的12.8%,主要為卸荷程度較弱的弱上風(fēng)化巖體;V級巖體占邊坡巖體總量的6.6%,主要為強卸荷巖體。 (3)工程邊坡開挖水平深度在62~85m之間,在2640m高程以下坡比為1:0.3,2640m高程以上坡比為1:0.5。邊坡開挖以后不存在大規(guī)模的失穩(wěn)塊體,但硐臉邊坡由裂隙組合產(chǎn)生的隨機塊體易發(fā)生楔形塊體滑移,上游側(cè)邊坡局部板裂狀巖體易發(fā)生傾倒變形,工程邊坡的開口部位分布大量V級巖體易產(chǎn)生小規(guī)模滑塌破壞。 (4)開挖邊坡應(yīng)力、位移場的三維數(shù)值模擬結(jié)果表明開挖過程中,坡體內(nèi)部最大主應(yīng)力在開挖坡腳有一定的應(yīng)力集中,總體變化不大,最小主應(yīng)力在開挖邊坡頂部呈正值,表示有拉應(yīng)力出現(xiàn),從位移矢量圖上看,開挖邊坡頂部有指向臨空方向的位移,驗證了邊坡頂部V級巖體的變形特征。在第三部開挖后形成的直立坡頂部,出現(xiàn)指向坡外的位移,且在F15斷層出露部位巖體位移量增大,說明邊坡開挖以后在F15斷層與坡面交匯處巖體易發(fā)生失穩(wěn),在開挖形成的直立坡頂部巖體易發(fā)生失穩(wěn)。通過UDEC數(shù)值模擬軟件對上游側(cè)邊坡開挖前后的位移變形分析可知,邊坡在開挖以后坡頂處的板裂化巖體未產(chǎn)生大位移,總體上處于穩(wěn)定狀態(tài),在開挖坡面頂部f29斷層與f28斷層之間的巖體位移量最大,位移指向臨空方向,往里巖體位移逐漸減小,到f25斷層以后巖體基本上沒有臨空方向位移。說明上游側(cè)邊坡開挖以后板裂化巖體未立即發(fā)生傾倒失穩(wěn),但若巖體不采取任何措施長期暴露于坡表,或在地震工況下有失穩(wěn)的可能。 (5)對硐臉邊坡陡傾角斷層出露部位應(yīng)采用錨桿支護,對坡面的隨機塊體應(yīng)采用隨機錨桿支護,對邊坡開口部位的V級巖體應(yīng)使用噴射混凝土結(jié)合系統(tǒng)錨桿支護,對上游側(cè)邊坡局部的板裂化巖體應(yīng)采用預(yù)應(yīng)力錨索支護。
[Abstract]:The stability of the slope is one of the main engineering geological problems in the construction of water conservancy and hydropower projects. It is of vital significance to study the stability of the slope for the smooth development and completion of the construction of the project, and it is of great significance to give full play to the engineering effect after the construction of the project. On the basis of the research, the rock mass structure characteristics of the water intake slope of the power station are analyzed. The weathering unloading zone and the quality classification of rock mass are studied. The deformation and failure mode of the slope is established by combining the deformation and failure of the slope. The stress and the numerical simulation method are used to the stress and the stress in the slope excavation process. The displacement characteristics are analyzed, and the stability of the engineering slope is systematically evaluated. The following main understandings are obtained.
(1) the rock rock of the slope is the early Yanshan black mica two feldspar, and the slope mainly develops three sets of steep dip structure surface and a group of slow dip structure surfaces. The three groups of steep dip angles intersect with the slope to the large angle, while the gentle dip structure surface is produced in the inclined slope. The rock structure is controlled by the rock mass structure, the overall deformation of the natural slope is weak and the whole stability is stable. The deformation is mainly manifested in the deformation of the unloading and splitting of the structural surface along the steep dip angle, the falling collapse with the combination of the slow dip angle structure surface and the steep dip structure surface, and the deformation of the plate cracking of the upper side slope rock.
(2) according to the characteristics of rock mass weathering unloading and rock mass structure combined with RMR and CSMR method, the slope rock mass quality is divided, and it is concluded that the slope rock mass is mainly II grade rock mass, accounting for 50% of the total rock mass, mainly distributed in the non weathering and non unloading rock body; the III grade rock mass accounts for 30% of the total rock mass of the slope, mainly for the weak weathered rock mass; IV grade. The rock mass accounts for 12.8% of the total rock mass of the slope, which is mainly the weakly weathered rock mass with weak unloading degree, and the V grade rock mass accounts for 6.6% of the total rock mass of the slope, which is mainly the strong unloading rock.
(3) the horizontal depth of the excavation of the slope is between 62 and 85m, and there is no mass instability block after the slope ratio of the slope of the 2640m elevation is 1:0.32640m elevation above the slope of the slope, but the random block produced by the fracture combination is easily slipping, and the partial rock mass in the upper side slope is prone to dip. Inverted deformation, a large number of V grade rock mass at the opening part of the engineering slope is prone to small-scale collapse.
(4) the three-dimensional numerical simulation of the slope stress and displacement field shows that the maximum principal stress in the slope body has a certain stress concentration at the foot of the excavated slope during the excavation process, and the overall change is not significant. The minimum principal stress is positive at the top of the excavation slope, indicating the emergence of tensile stress. From the displacement vector diagram, the top of the excavation slope points to the side side of the slope. The displacement of the slope at the top of the slope at the top of the slope shows the displacement of the slope at the top of the third part of the slope, and the displacement of the rock position in the exposed part of the F15 fault increases, indicating that the rock mass at the intersection of the F15 fault and the slope is easy to lose stability after the excavation of the slope, and the rock mass at the top of the vertical slope formed by the excavation is found. It is easy to lose stability. Through the analysis of the displacement and deformation of the upper side slope before and after the excavation of the UDEC numerical simulation software, it can be seen that the plate cracking rock mass of the slope at the top of the slope has not produced a large displacement, and in general it is in a stable state. The displacement of the rock mass between the f29 fault and the f28 fault at the top of the slope is the largest, and the displacement points to the direction of the air. The displacement of the rock body gradually decreases, and the rock mass has no immediate displacement after the F25 fault. It shows that the rock mass of the upper side slope does not collapse immediately after the slope excavation, but if the rock mass does not take any measures for long-term exposure to the slope surface or in the earthquake condition, it may be unstable.
(5) bolt support should be adopted for the location of the steep dip fault in the slope of the slope, and random bolt support should be adopted for the random block of the slope. The shotcrete combined system bolt support should be used for the V rock mass in the opening part of the slope, and the prestressed anchor cable should be used in the partial rock mass of the upper side slope.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TV223
【相似文獻】
相關(guān)期刊論文 前10條
1 薛阿強;楊文俊;王列;;三峽電站進水口體形優(yōu)化試驗研究和選型過程[J];水力發(fā)電學(xué)報;2009年06期
2 任坤杰;王鳳;韓繼斌;;電站進水口的水流數(shù)值模擬分析[J];人民長江;2010年15期
3 樊仕德,向陽;羊湖電站進水口施工帷幕的設(shè)計與灌漿[J];水利水電技術(shù);1995年01期
4 段文剛;金峰;張暉;;三峽地下電站進水口漩渦特性研究[J];湖北水力發(fā)電;2008年02期
5 段文剛;金峰;楊文俊;陳端;;三峽地下電站進水口漩渦特性試驗研究[J];水力發(fā)電學(xué)報;2010年02期
6 黃智敏;何小惠;鐘勇明;陳卓英;付波;;樂昌峽水電站進水口水力模型試驗研究[J];水電站設(shè)計;2011年02期
7 陳興亮;楊磊;羅暢;李希;;凱樂塔電站進水口消渦措施試驗研究[J];中國農(nóng)村水利水電;2012年10期
8 王友亮,徐詩銀,劉然心;三峽電站進水口體型優(yōu)化試驗研究[J];人民長江;1996年12期
9 謝紅兵;三峽電站進水口型式設(shè)計與研究[J];人民長江;1997年10期
10 趙紅倉;張生芹;何旭;;電站進水口引渠邊坡施工地質(zhì)工程預(yù)報及處理措施[J];科技致富向?qū)?2011年06期
相關(guān)碩士學(xué)位論文 前3條
1 王波;電站進水口聯(lián)系梁對水流影響的三維數(shù)值模擬研究[D];長江科學(xué)院;2012年
2 楊建東;分層取水式電站進水口水力特性數(shù)值模擬研究[D];長江科學(xué)院;2010年
3 張曦;雅礱江牙根二級水電站進水口邊坡穩(wěn)定性研究[D];成都理工大學(xué);2014年
本文編號:2011137
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2011137.html