水電站水庫(kù)群調(diào)度優(yōu)化及其效益評(píng)價(jià)方法研究
本文選題:梯級(jí)水庫(kù)群 + 支持向量機(jī); 參考:《華北電力大學(xué)》2014年博士論文
【摘要】:能源是人類生存和發(fā)展的重要物質(zhì)基礎(chǔ),攸關(guān)國(guó)計(jì)民生和國(guó)家安全。水電作為目前開發(fā)規(guī)模龐大、開發(fā)技術(shù)最為成熟的可再生能源,以其良好的調(diào)節(jié)性能、低廉的運(yùn)行成本和快速的負(fù)荷響應(yīng)能力,在世界電力能源格局中發(fā)揮著重要作用。我國(guó)水力資源豐富,為經(jīng)濟(jì)社會(huì)發(fā)展提供了能源保障。加快開發(fā)水能資源是我國(guó)增加清潔能源供應(yīng)、優(yōu)化能源結(jié)構(gòu)、應(yīng)對(duì)世界氣候變化、實(shí)現(xiàn)可持續(xù)發(fā)展的重要措施!笆濉睍r(shí)期是我國(guó)全面建設(shè)小康社會(huì)的關(guān)鍵時(shí)期,從我國(guó)的能源特點(diǎn)和自然資源結(jié)構(gòu)來(lái)看,加快水電發(fā)展也是實(shí)現(xiàn)2020年非化石能源目標(biāo)的必經(jīng)之路,也是有效降低單位GDP二氧化碳排放量的重要措施。 水庫(kù)調(diào)度是水庫(kù)運(yùn)行管理的重要環(huán)節(jié),調(diào)度水平直接影響著水庫(kù)水電站綜合效益的發(fā)揮。合理優(yōu)化的水庫(kù)調(diào)度方式能夠在不增加硬件投入的情況下,獲得可觀的社會(huì)效益和經(jīng)濟(jì)效益,也是優(yōu)化能源結(jié)構(gòu)、促進(jìn)節(jié)能減排的有效措施。本論文在對(duì)水庫(kù)水電站群隱隨機(jī)優(yōu)化理論回顧歸納的基礎(chǔ)上,分別從確定性優(yōu)化調(diào)度模型建立與求解、調(diào)度規(guī)則的制定與優(yōu)化、基于調(diào)度規(guī)則的水庫(kù)水電站群系統(tǒng)仿真、效益評(píng)價(jià)及隱隨機(jī)優(yōu)化調(diào)度因素影響分析等方面對(duì)徑流不確定條件下的水電站群優(yōu)化調(diào)度進(jìn)行研究。主要研究工作包括: (1)水庫(kù)水電站群隱隨機(jī)優(yōu)化調(diào)度理論研究及歸納。介紹了水庫(kù)確定性優(yōu)化調(diào)度和隨機(jī)調(diào)度的概念和特征,從徑流過(guò)程角度分析二者之間的區(qū)別和關(guān)系。在分析顯隨機(jī)優(yōu)化調(diào)度和隱隨機(jī)優(yōu)化調(diào)度原理的基礎(chǔ)上,重點(diǎn)綜述隱隨機(jī)優(yōu)化理論方法的國(guó)內(nèi)外研究進(jìn)展及其在水電站水庫(kù)調(diào)度規(guī)則制定中的應(yīng)用,并總結(jié)各種調(diào)度規(guī)則制定方法的適用條件和優(yōu)缺點(diǎn)。 (2)基于網(wǎng)格搜索和交叉驗(yàn)證的改進(jìn)支持向量機(jī)模型研究;谥С窒蛄繖C(jī)方法的原理分析其在回歸預(yù)測(cè)領(lǐng)域的優(yōu)勢(shì),針對(duì)支持向量機(jī)對(duì)參數(shù)敏感和小樣本回歸易受訓(xùn)練樣本隨機(jī)性影響的特點(diǎn),建立基于網(wǎng)格搜索的參數(shù)尋優(yōu)機(jī)制和基于交叉驗(yàn)證的樣本隨機(jī)性規(guī)避機(jī)制,對(duì)支持向量機(jī)性能進(jìn)行改進(jìn)。通過(guò)實(shí)例研究,驗(yàn)證改進(jìn)機(jī)制對(duì)支持向量機(jī)在小樣本訓(xùn)練擬合能力和預(yù)測(cè)能力方面的效果。 (3)基于C++和MATLAB的水庫(kù)水電站群混合編程仿真平臺(tái)的建立。針對(duì)隱隨機(jī)優(yōu)化調(diào)度在實(shí)際運(yùn)行中的實(shí)現(xiàn)難度,考慮隱隨機(jī)優(yōu)化調(diào)度模型復(fù)雜、計(jì)算機(jī)實(shí)現(xiàn)環(huán)境多樣化的特點(diǎn),以支持向量機(jī)理論為例,將基于MATLAB的調(diào)度決策生成算法預(yù)測(cè)編譯為動(dòng)態(tài)庫(kù)文件,使其在基于C++的水庫(kù)水電站群系統(tǒng)仿真程序中被調(diào)用,實(shí)現(xiàn)實(shí)時(shí)滾動(dòng)模擬。通過(guò)案例應(yīng)用,對(duì)仿真平臺(tái)的結(jié)構(gòu)及系統(tǒng)穩(wěn)定性和可擴(kuò)展性進(jìn)行評(píng)價(jià)。 (4)金沙江中下游12級(jí)梯級(jí)水電系統(tǒng)隱隨機(jī)優(yōu)化調(diào)度研究及其效益評(píng)價(jià)。以我國(guó)十三大水電梯級(jí)中規(guī)模最大的金沙江中下游梯級(jí)水電站系統(tǒng)為例,以系統(tǒng)發(fā)電量和保證出力為優(yōu)化目標(biāo),建立并求解梯級(jí)中長(zhǎng)期確定性優(yōu)化調(diào)度模型,作為隱隨機(jī)模型的訓(xùn)練樣本。運(yùn)用改進(jìn)支持向量機(jī)方法對(duì)系統(tǒng)調(diào)度規(guī)則制定,并模擬系統(tǒng)1989-2000年運(yùn)行過(guò)程。另基于多元逐步回歸法制定調(diào)度規(guī)則并仿真,將同期確定性優(yōu)化調(diào)度結(jié)果及兩種仿真結(jié)果進(jìn)行對(duì)比。對(duì)仿真結(jié)果的發(fā)電量、發(fā)電過(guò)程、保證出力等方面進(jìn)行對(duì)比,分析仿真結(jié)果的效益和可靠性。 (5)隱隨機(jī)優(yōu)化調(diào)度模型因素影響研究。定量研究梯級(jí)規(guī)模、徑流預(yù)報(bào)誤差、模型參數(shù)、輸出決策等因素對(duì)梯級(jí)水電站群隱隨機(jī)優(yōu)化調(diào)度仿真結(jié)果的影響。基于金沙江下游——長(zhǎng)江中游大型梯級(jí)水電系統(tǒng),以其宗單庫(kù)、其宗——向家壩12級(jí)和其宗——葛洲壩14級(jí)三種電站組合為研究對(duì)象,控制各影響因素變化范圍,并分別進(jìn)行仿真運(yùn)行和效益評(píng)價(jià)。評(píng)價(jià)結(jié)果所揭示的各因素所帶來(lái)的影響方式對(duì)于支持向量機(jī)理論的改進(jìn)以及隱隨機(jī)優(yōu)化調(diào)度的下一步發(fā)展有著重要的參考價(jià)值。
[Abstract]:Energy is an important material basis for the survival and development of human beings. It is vital to the national economy and the people's livelihood and national security. As a renewable energy, which has a large scale of development and the most mature development technology, it plays an important role in the world power energy pattern with its good regulation performance, low operating cost and rapid load response ability. China is rich in hydraulic resources and provides energy security for economic and social development. Speeding up the development of water energy resources is an important measure for China to increase the supply of clean energy, optimize the energy structure, cope with the world climate change and achieve sustainable development. "12th Five-Year" period is the key period for China to build a well-off society in an all-round way, from China's energy special. Point and natural resource structure, speeding up the development of hydropower is also the only way to achieve the goal of non fossil energy in 2020, and it is also an important measure to effectively reduce the emissions of GDP carbon dioxide.
Reservoir operation is an important link in the operation and management of the reservoir. The level of dispatching directly affects the comprehensive benefit of the reservoir. The rational and optimized reservoir scheduling method can obtain considerable social and economic benefits without increasing the input of hardware. It is also an effective measure to optimize the energy source structure and promote energy conservation and emission reduction. On the basis of the review of the theory of hidden stochastic optimization for reservoir hydroelectric stations, this paper is based on the establishment and solution of the deterministic optimal scheduling model, the formulation and optimization of the scheduling rules, the simulation of the reservoir hydroelectric station group system based on the scheduling rules, the benefit evaluation and the factor influence analysis of the implicit stochastic optimization scheduling, and so on. The optimal operation of hydropower stations is studied. The main research work includes:
(1) the study and induction of the implicit stochastic optimization scheduling theory of reservoir hydropower stations. The concept and characteristics of reservoir deterministic optimal scheduling and stochastic scheduling are introduced. The difference and relationship between the two are analyzed from the point of view of the runoff process. On the basis of the analysis of the explicit stochastic optimization scheduling and the implicit stochastic optimization scheduling, the implicit stochastic optimization theory is mainly summarized. The research progress of the method at home and abroad and its application in the formulation of hydropower station reservoir scheduling rules, and the application conditions and advantages and disadvantages of various scheduling rules formulation methods are summarized.
(2) an improved support vector machine model based on grid search and cross validation. Based on the principle of support vector machine (SVM), the advantages of the support vector machine in the domain of regression prediction are analyzed. In view of the characteristics of the parameter sensitivity of support vector machines and the randomness of the small sample regression which are easily subject to the randomness of the training samples, the parameter optimization mechanism and the base based on the grid search are established. The performance of SVM is improved by the random evasion mechanism of cross validation. The effect of the improved mechanism on the fitting ability and prediction ability of the support vector machine in small sample training is verified by an example.
(3) the establishment of a hybrid programming simulation platform for the reservoir hydropower station group based on C++ and MATLAB. In view of the difficulty of realizing the hidden random optimization scheduling in the actual operation, the characteristics of the complexity of the hidden stochastic optimization scheduling model and the diversification of the computer environment are considered, and the support vector machine theory is taken as an example, and the scheduling decision generation algorithm based on MATLAB is predicted. As a dynamic library file, it is called in the simulation program of the C++ based reservoir hydroelectric station group system. The real time rolling simulation is realized. The structure of the simulation platform, the stability and extensibility of the system are evaluated by the case application.
(4) the research and benefit evaluation of the cascade hydropower system in the middle and lower reaches of the middle and lower reaches of the Jinsha River, taking the cascade hydropower stations in the middle and lower reaches of the middle and lower Jinsha River, the largest in the thirteenth big hydropower cascade in China as an example, to establish and solve the middle and long term deterministic optimal scheduling model of the cascade. Training samples of implicit stochastic model. The system scheduling rules are formulated with improved support vector machine (improved SVM), and the 1989-2000 year operation process of the system is simulated. In addition, the scheduling rules are formulated and simulated based on the multiple stepwise regression method. The results of the deterministic optimal scheduling and the two simulation results are compared. Compare the process, guarantee output and other aspects, and analyze the effectiveness and reliability of the simulation results.
(5) study on the factor influence of the implicit stochastic optimization scheduling model. Quantitative study of the influence of cascade scale, runoff forecasting error, model parameters, output decision and other factors on the simulation results of cascade hydropower stations' implicit stochastic optimization scheduling. Based on the lower reaches of the Jinsha River, the large cascade hydropower system in the middle reaches of the Yangtze River, with its single library and its sect to Jiaba 12 level The combination of the three kinds of power stations in Gezhouba Dam 14 is the research object, which controls the range of the influence factors, and carries out the simulation operation and the benefit evaluation respectively. The influence mode of the factors revealed by the evaluation results has an important reference for the improvement of the support vector machine theory and the next step of the hidden stochastic optimization scheduling. Value.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV737;TV697.12
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林茂六;陳春雨;;基于傅立葉核與徑向基核的支持向量機(jī)性能之比較[J];重慶郵電學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年06期
2 涂征宇;蘇永華;楊明輝;萬(wàn)智;;基于徑向基核函數(shù)逼近的河岸山坡失穩(wěn)概率分析[J];鐵道科學(xué)與工程學(xué)報(bào);2011年05期
3 紀(jì)昌明;蘇學(xué)靈;周婷;黃海濤;王麗萍;;梯級(jí)水電站群調(diào)度函數(shù)的模型與評(píng)價(jià)[J];電力系統(tǒng)自動(dòng)化;2010年03期
4 紀(jì)昌明;喻杉;周婷;楊子俊;劉方;;蟻群算法在水電站調(diào)度函數(shù)優(yōu)化中的應(yīng)用[J];電力系統(tǒng)自動(dòng)化;2011年20期
5 施展武,羅云霞,邱家駒;基于Matlab遺傳算法工具箱的梯級(jí)水電站優(yōu)化調(diào)度[J];電力自動(dòng)化設(shè)備;2005年11期
6 徐茹枝;王宇飛;;粒子群優(yōu)化的支持向量回歸機(jī)計(jì)算配電網(wǎng)理論線損方法[J];電力自動(dòng)化設(shè)備;2012年05期
7 伍永剛,王定一;基于ANN的梯級(jí)水電站實(shí)時(shí)優(yōu)化運(yùn)行[J];系統(tǒng)工程;2000年03期
8 于明;艾月喬;;基于人工蜂群算法的支持向量機(jī)參數(shù)優(yōu)化及應(yīng)用[J];光電子.激光;2012年02期
9 雷曉云,陳惠源,,榮航儀,袁懷冰;水庫(kù)群多級(jí)保證率優(yōu)化調(diào)度函數(shù)的研究及應(yīng)用[J];灌溉排水;1996年02期
10 王麗萍;周婷;;水電站月度調(diào)度函數(shù)的模型制定與模擬結(jié)果評(píng)價(jià)[J];華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
相關(guān)博士學(xué)位論文 前9條
1 常甜甜;支持向量機(jī)學(xué)習(xí)算法若干問(wèn)題的研究[D];西安電子科技大學(xué);2010年
2 申建建;大規(guī)模水電站群短期聯(lián)合優(yōu)化調(diào)度研究與應(yīng)用[D];大連理工大學(xué);2011年
3 劉群鋒;最優(yōu)化問(wèn)題的幾種網(wǎng)格型算法[D];湖南大學(xué);2011年
4 楊俊杰;基于MOPSO和集對(duì)分析決策方法的流域梯級(jí)聯(lián)合優(yōu)化調(diào)度[D];華中科技大學(xué);2007年
5 韓順杰;基于支持向量機(jī)的工程車輛自動(dòng)變速方法研究[D];吉林大學(xué);2009年
6 彭兵;基于改進(jìn)支持向量機(jī)和特征信息融合的水電機(jī)組故障診斷[D];華中科技大學(xué);2008年
7 吳青;基于優(yōu)化理論的支持向量機(jī)學(xué)習(xí)算法研究[D];西安電子科技大學(xué);2009年
8 裴哲義;大型流域水電站水庫(kù)群聯(lián)合優(yōu)化調(diào)度及風(fēng)險(xiǎn)分析[D];華北電力大學(xué);2012年
9 喻杉;基于改進(jìn)蟻群算法的梯級(jí)水庫(kù)群優(yōu)化調(diào)度研究[D];華北電力大學(xué);2012年
本文編號(hào):1990066
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1990066.html