轉(zhuǎn)葉螺旋流消能裝置試驗(yàn)研究
本文選題:轉(zhuǎn)葉 + 螺旋流; 參考:《太原理工大學(xué)》2014年碩士論文
【摘要】:大型水利工程項(xiàng)目,以及水電站、火電站中水、泥漿及各種材料的長距離高壓水水力輸送都必須依賴于管道。水流的水壓是管道能輸送液體的必要條件,而現(xiàn)實(shí)中有一些管道系統(tǒng)由于它存在的自然條件,即地形地貌條件的影響,初始水頭大于輸送流體所需要消耗的最大能量,而這部分剩下來的多余的能量就會(huì)對(duì)向下游設(shè)備產(chǎn)生不必的破壞,從而帶來不必要的風(fēng)險(xiǎn)。所以,為了保障管道及下游設(shè)備的安全,必須研究一種有效而且經(jīng)濟(jì)適用的消能裝置,把管道內(nèi)多余的能量消散出去。 本文主要論述了的以測(cè)試轉(zhuǎn)葉螺旋流消能裝置的的消能效率為主要目的具體試驗(yàn)過程,論述其消能過程和消能的原理,與過去導(dǎo)師延耀興做的同類型采用的單純的孔板消能裝能進(jìn)行相互對(duì)比,并總結(jié)各種消能裝置的優(yōu)缺點(diǎn)。 本文基于科學(xué)的物理試驗(yàn)和大量的能量耗散資料,重點(diǎn)對(duì)轉(zhuǎn)葉螺旋流消能裝置在水流能量消散過程中的各個(gè)測(cè)試點(diǎn)壓力分布情況和測(cè)試管局部阻力系數(shù)進(jìn)行了研究,分析了此消能裝置的能量消散原理和消能效率,研究的主要內(nèi)容包括: 1、在不同的雷諾數(shù)條件下,即在管道內(nèi)流量不同的條件下,能量消耗裝置轉(zhuǎn)葉板在不同扭轉(zhuǎn)角度的情況下,通過對(duì)測(cè)試管各個(gè)測(cè)壓斷面的壓力的分析,不同轉(zhuǎn)葉板開口方案下,消能裝置各個(gè)部件處的壓差大小,確定安裝轉(zhuǎn)葉板處是該能量消散裝置的主要消能區(qū)。 2、通過試驗(yàn)數(shù)據(jù)來計(jì)算此能量消散裝置中各組成部件的耗能效果,以及此裝置局部阻力系數(shù)。 3、對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析,確定影響轉(zhuǎn)葉螺旋流消能裝置消能效果的參數(shù),以及以上參數(shù)對(duì)消能效果的影響程度。 4、對(duì)比轉(zhuǎn)葉消能裝置和孔板消能裝置的消能效率,確定兩種消能裝置哪種更實(shí)用更適合應(yīng)用于現(xiàn)實(shí)的管道工程中。 通過對(duì)試驗(yàn)所得的數(shù)據(jù)進(jìn)行多方面全方位的分析,本文得出如下結(jié)論: 1)本文研究的轉(zhuǎn)葉螺旋流消能裝置的總消能效率最高可達(dá)85%,此裝置完全可以被應(yīng)用于工程實(shí)踐中。 2)本試驗(yàn)裝置可以根據(jù)改變轉(zhuǎn)葉板的物理參數(shù)來控制消能效率。改變轉(zhuǎn)葉板的開口角度和轉(zhuǎn)葉板之間的扭轉(zhuǎn)角度,得到的消能效率是不同的。 3)該裝置消能效率與轉(zhuǎn)葉板之間的扭轉(zhuǎn)角度成正比,與雷諾數(shù)成正比,與轉(zhuǎn)葉板的開口角度成反比。 4)該裝置的主要消能區(qū)在安裝有轉(zhuǎn)葉板的區(qū)段,這是因?yàn)樗髟谵D(zhuǎn)葉板作用下不但產(chǎn)生孔口射流還產(chǎn)生了螺旋流,所以此段耗能效果最好。 5)該消能裝置結(jié)構(gòu)簡單,裝卸方便,可操作性強(qiáng)。 6)該裝置比與其消能原理類似的孔板消能裝置更實(shí)用,消能效率更高,更應(yīng)該被用于水利工程中。
[Abstract]:Large water conservancy projects, as well as hydropower stations, thermal power stations, water, mud and all kinds of materials for long distance high pressure hydraulic transport must rely on pipelines. The pressure of water flow is the necessary condition for the pipeline to carry liquid, but in reality there are some pipeline systems whose initial head is larger than the maximum energy needed to transport the fluid because of its natural condition, that is, the influence of topographic and geomorphological conditions. The excess energy left over would cause unnecessary damage to downstream equipment, thereby creating unnecessary risks. Therefore, in order to ensure the safety of the pipeline and downstream equipment, an effective and economical energy dissipation device must be developed to dissipate the excess energy in the pipeline. In this paper, the main purpose of this paper is to test the energy dissipation efficiency of rotating blade spiral flow dissipators as the main purpose of the specific test process, and discuss its energy dissipation process and the principle of energy dissipation. Compared with the former tutor Yan Yaoxing made by the same type of simple hole plate energy dissipation, and summed up the advantages and disadvantages of various energy dissipation devices. Based on scientific physical experiments and a large amount of energy dissipation data, the pressure distribution of each test point and the local resistance coefficient of the test tube during the energy dissipation of the rotating blade helical flow energy dissipation device are studied in this paper. The energy dissipation principle and energy dissipation efficiency of this energy dissipation device are analyzed. The main contents of the study are as follows: 1. Under the condition of different Reynolds number, that is, under the condition of different flow rate in the pipeline, under different torsion angle, through the analysis of the pressure of each pressure measuring section of the test pipe, under the different opening scheme of the rotary blade plate, The main energy dissipation area of the energy dissipation device is the pressure difference between the parts of the energy dissipation device and the installation of the rotating blade plate. 2. The energy dissipation effect of each component of the device and the local resistance coefficient of the device are calculated by the experimental data. 3. The experimental data are analyzed to determine the parameters that affect the energy dissipation effect of spiral flow energy dissipation device and the influence degree of the above parameters on the energy dissipation effect. 4. By comparing the energy dissipation efficiency of rotating vanes and orifice plate energy dissipation devices, it is determined which of the two energy dissipation devices is more practical and more suitable for practical pipeline engineering. Through the comprehensive analysis of the data obtained from the experiment, this paper draws the following conclusions: 1) the total energy dissipation efficiency of the rotary blade spiral flow energy dissipation device studied in this paper is as high as 850.This device can be used in engineering practice. 2) the energy dissipation efficiency can be controlled by changing the physical parameters of the rotor plate. The energy dissipation efficiency is different by changing the opening angle and the torsional angle between the rotor plate and the rotary blade plate. 3) the energy dissipation efficiency of the device is proportional to the torsion angle, Reynolds number and the opening angle of the rotor plate. 4) the main energy dissipation area of the device is in the section where the rotary blade plate is installed, which is because the flow of water under the action of the rotating blade plate not only produces the orifice jet but also the spiral flow, so the energy dissipation effect of this section is the best. 5) the energy dissipator has the advantages of simple structure, convenient loading and unloading and strong maneuverability. 6) this device is more practical and more efficient than the orifice plate energy dissipation device similar to its energy dissipation principle, and should be used in water conservancy engineering.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV653
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 皇甫潤金;管道急流輸水及多種消能形式的應(yīng)用效果[J];科技情報(bào)開發(fā)與經(jīng)濟(jì);2004年11期
2 吳勇;二維孔口紊動(dòng)射流流場(chǎng)特性的實(shí)驗(yàn)研究[J];科技情報(bào)開發(fā)與經(jīng)濟(jì);2005年09期
3 延耀興;張杰;毛惠惠;;螺旋流消能裝置消能效果試驗(yàn)研究[J];科技情報(bào)開發(fā)與經(jīng)濟(jì);2005年23期
4 熊鰲魁,魏慶鼎;軸對(duì)稱螺旋流解析解的探討[J];力學(xué)與實(shí)踐;1999年05期
5 閻慶紱,陳仰吾,高恩恩,李仲平;離心泵入口旋流的試驗(yàn)研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);1992年01期
6 林秀山,沈鳳生;小浪底水利樞紐孔板泄洪消能研究[J];水利水電技術(shù);2000年01期
7 張建民,許唯臨,劉善均,王韋;突擴(kuò)突縮式內(nèi)流消能工的數(shù)值模擬研究[J];水利學(xué)報(bào);2004年12期
8 武鵬林,彭龍生;多級(jí)孔板消能效率初探[J];太原工業(yè)大學(xué)學(xué)報(bào);1995年04期
9 武鵬林,彭龍生;螺旋管流輸移固粒與起旋器效率[J];太原工業(yè)大學(xué)學(xué)報(bào);1997年03期
10 彭龍生,張羽,任萬森,劉春晶;螺旋流輸移勻粒的能耗[J];太原理工大學(xué)學(xué)報(bào);1998年06期
,本文編號(hào):1940979
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1940979.html