天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

不同導(dǎo)葉長度的管道車在不運(yùn)動條件下形成的同心環(huán)狀縫隙螺旋流水力特性研究

發(fā)布時間:2018-05-06 23:25

  本文選題:水力輸送 + 管道車; 參考:《太原理工大學(xué)》2015年碩士論文


【摘要】:近年來,隨著經(jīng)濟(jì)的發(fā)展,交通運(yùn)輸在國民經(jīng)濟(jì)中占據(jù)了至關(guān)重要的地位。傳統(tǒng)的交通運(yùn)輸方式大都會對環(huán)境造成破壞,而隨著人類整體環(huán)保意識的增強(qiáng),傳統(tǒng)的高耗能、高污染的運(yùn)輸方式逐漸不再適應(yīng)時代的發(fā)展,因此亟需發(fā)展一種新型的低碳運(yùn)輸方式。筒裝料管道水力輸送便是符合這一要求的產(chǎn)物。 筒裝料管道水力輸送作為新興管道水力輸送技術(shù),是對傳統(tǒng)管道水力輸送技術(shù)的補(bǔ)充和完善,本文結(jié)合國家自然科學(xué)基金“管道縫隙螺旋流水力特性研究(51109155)”和“管道列車水力輸送能耗研究(51179116)”,,采用理論分析、試驗(yàn)研究和數(shù)值模擬相結(jié)合的方法,對不同導(dǎo)葉長度的管道車在不運(yùn)動狀態(tài)形成的同心環(huán)狀縫隙螺旋流水力特性進(jìn)行研究。得出了以下主要結(jié)論: (1)相同流量下,隨著管道車導(dǎo)葉長度的增加,縫隙螺旋流的壓強(qiáng)值,在車后斷面和車前斷面均表現(xiàn)為先減小后增大再減小的趨勢,在車中斷面表現(xiàn)為先增大后減小再增大的趨勢,其中導(dǎo)葉長度l=0.25L時,三個測試斷面平均壓強(qiáng)最小。 (2)相同流量下,隨著管道車導(dǎo)葉長度的增加,縫隙螺旋流的軸向速度,在車后斷面表現(xiàn)為逐步增大的趨勢,在車中斷面和車前斷面均表現(xiàn)為先減小后增大再減小的趨勢,其中導(dǎo)葉長度l=0.75L時,三個測試斷面平均軸向速度最大。 (3)相同流量下,隨著管道車導(dǎo)葉長度的增加,縫隙螺旋流的徑向速度,在車后斷面表現(xiàn)為先減小后增大再減小的趨勢,在車中斷面、車前斷面均表現(xiàn)為先增大后減小再增大的趨勢,其中導(dǎo)葉長度l=0.5L時,三個測試斷面平均徑向速度最大。 (4)相同流量下,隨著管道車導(dǎo)葉長度的增加,縫隙螺旋流的周向速度,在車后斷面表現(xiàn)為逐漸增大的趨勢,在車中斷面表現(xiàn)為先增大后減小的趨勢,在車前斷面表現(xiàn)為先增大后減小再增大的趨勢,其中導(dǎo)葉長度l=0.5L時,三個測試斷面平均周向速度最大。 (5)相同流量下,對于帶導(dǎo)葉的管道車,導(dǎo)葉凹側(cè)水流的壓強(qiáng)值大于位于導(dǎo)葉凸側(cè)面的壓強(qiáng)值,徑向速度絕對值的大小關(guān)系與壓強(qiáng)值的大小關(guān)系相同,軸向速度和周向速度絕對值的大小關(guān)系與壓強(qiáng)值的大小關(guān)系相反。 (6)同一型號管道車,縫隙螺旋流在車中斷面的壓強(qiáng)值大于車后斷面、車前斷面的壓強(qiáng)值;縫隙螺旋流在車后斷面的軸向流速的最大值出現(xiàn)在靠近車壁的縫隙中心,縫隙螺旋流在車中和車前斷面的軸向流速最大值出現(xiàn)在靠近管壁的縫隙中心;縫隙螺旋流在車后斷面、車中斷面、車前斷面的徑向速度和周向速度大小的變化趨勢均是先減小后增大。 (7)利用FLUENT軟件對管道車在平直段不運(yùn)動狀態(tài)下所產(chǎn)生的縫隙流的流場進(jìn)行了數(shù)值模擬,分析了縫隙流場中的壓強(qiáng)和三維速度的變化分布特性,并與實(shí)測試驗(yàn)對比驗(yàn)證,結(jié)果基本一致。 本論文的研究成果對靜邊界縫隙螺旋流的研究和管道車在實(shí)際生產(chǎn)中的應(yīng)用提供一定的理論依據(jù)。
[Abstract]:In recent years , with the development of economy , transportation plays a vital role in the national economy . Traditional modes of transportation can damage the environment , but with the enhancement of the whole environmental awareness of mankind , the traditional high - energy consumption and high - pollution transport mode are no longer suitable for the development of the times . Therefore , it is urgent to develop a new low - carbon transport mode .

This paper studies the hydraulic characteristics of concentric annular gap spiral flow formed by different guide vane lengths by combining theoretical analysis , test research and numerical simulation with the method of combining theoretical analysis , test research and numerical simulation . The main conclusions are as follows :

( 1 ) Under the same flow , as the length of the guide vane of the pipeline increases , the pressure value of the spiral flow of the gap increases and then decreases after the vehicle rear section and the front cross section of the vehicle are reduced , and the cross section performance of the vehicle increases first and then decreases the re - increasing trend , wherein , when the guide vane length l = 0.25L , the average pressure of the three test sections is minimum .

( 2 ) Under the same flow , with the increase of the guide vane length of the pipeline , the axial velocity of the spiral flow of the gap is gradually increased in the rear section of the vehicle , and the cross section of the vehicle and the front section of the vehicle show a tendency to increase the re - reduction , and the average axial velocity of the three test sections is the largest when the guide vane length l = 0.75L .

( 3 ) Under the same flow , with the increase of the length of the guide vane of the pipeline , the radial velocity of the spiral flow of the gap , the decrease of the cross - section of the vehicle after the reduction of the cross - section of the vehicle , and the trend of decreasing the re - increase of the cross - section and the front section of the vehicle , wherein the average radial velocity of the three test sections is the largest when the guide vane length l = 0.5L .

( 4 ) Under the same flow , with the increase of the guide vane length of the pipeline , the circumferential velocity of the spiral flow of the gap is gradually increased in the rear section of the vehicle .

and ( 5 ) under the same flow , the pressure value of the water flow on the concave side of the guide vane is larger than the pressure value positioned on the convex side of the guide vane , and the magnitude relation of the absolute value of the radial velocity is the same as the magnitude relation of the pressure value , and the magnitude relation between the axial speed and the circumferential velocity absolute value is opposite to the magnitude relation of the pressure value .

( 6 ) the pressure value of the cross section of the gap spiral flow in the vehicle is larger than that of the rear section of the vehicle and the pressure value of the front section of the vehicle ;
the maximum value of the axial flow velocity of the gap spiral flow in the rear section of the vehicle appears at the center of the gap close to the vehicle wall , and the maximum axial flow velocity of the gap spiral flow in the vehicle and the front section of the vehicle appears near the center of the gap near the pipe wall ;
The change trend of the radial velocity and the circumferential velocity of the gap spiral flow in the rear section of the vehicle , the cross section of the vehicle , the radial velocity and the circumferential velocity of the front section of the vehicle is reduced first and then increases .

( 7 ) By using FLUENT software , the numerical simulation of the flow field of the gap flow in the straight segment is simulated by FLUENT software , and the distribution characteristics of the pressure and the three - dimensional velocity in the gap flow field are analyzed , and compared with the measured test , the results are basically consistent .

The research results of this paper provide some theoretical basis for the research of static boundary gap spiral flow and the application of pipeline vehicle in actual production .

【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TV134

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉文俊,吳玉林,何國任;考慮縫隙流模型的貫流式水輪機(jī)轉(zhuǎn)輪內(nèi)部三維流動[J];動力工程;2002年05期

2 汪東,許振良,孟慶華;漿體管道輸送臨界流速的影響因素及計(jì)算分析[J];管道技術(shù)與設(shè)備;2004年06期

3 趙利安;許振良;;沉降性漿體管道減阻的研究進(jìn)展[J];管道技術(shù)與設(shè)備;2006年05期

4 林愉;李松;許睿;;圓管螺旋流局部起旋器的阻力損失和起旋效率研究[J];管道技術(shù)與設(shè)備;2008年06期

5 楊盤銘,張晉生,祝慶昌;尖山鐵礦長距離鐵精礦漿管道輸送技術(shù)的實(shí)踐[J];礦業(yè)工程;2003年01期

6 楊金艷;金英豪;姚香;;漿體管道輸送有關(guān)技術(shù)的試驗(yàn)研究[J];礦業(yè)工程;2009年03期

7 林愉;張曉東;雷萍;;圓管漿體螺旋流速度分布及運(yùn)動特性仿真[J];管道技術(shù)與設(shè)備;2013年03期

8 許振良;姜威;;漿體顆粒粒徑對漿體管道輸送壓力損失影響[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2014年12期

9 呂樹慧;王愛坤;咸立芬;趙璽蛟;;不同間距的五圓柱體繞流的流體動力特性研究[J];河北科技大學(xué)學(xué)報;2009年02期

10 張士林;許振良;邵龍?zhí)?;沉降性漿體速度與濃度分布耦合模型[J];哈爾濱工業(yè)大學(xué)學(xué)報;2006年03期



本文編號:1854372

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1854372.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0caef***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com