水工隧洞圍巖滲流場和應(yīng)力場數(shù)值模擬與分析
本文選題:隧洞 + 滲流場。 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:隧洞的開挖和施工經(jīng)過的地質(zhì)條件往往比較復(fù)雜,極有可能發(fā)生嚴(yán)重的工程事故,如突涌水、地表沉陷、洞身坍塌等,造成的工程人員傷亡、設(shè)備破壞、工期延誤等將對工程建設(shè)帶來很大的損失。隧洞建設(shè)中,地質(zhì)災(zāi)害是在各種復(fù)雜的水文地質(zhì)條件下形成的,研究隧洞圍巖的應(yīng)力場和滲流場有助于了解地質(zhì)災(zāi)害產(chǎn)生的成因。本文在介紹裂隙巖體滲流基礎(chǔ)理論的基礎(chǔ)上,采用ADINA有限元軟件進(jìn)行了水工隧洞開挖的數(shù)值模擬,分析了滲流場和應(yīng)力場在隧洞開挖前后的變化規(guī)律,研究了地下水水位和注漿圈對隧洞圍巖中滲流場和應(yīng)力場的影響,最后結(jié)合實際工程研究了應(yīng)力場和滲流場隨隧洞開挖時間的變化規(guī)律。本文主要得到以下幾點結(jié)論:(1)隧洞開挖導(dǎo)致隧洞圍巖中的地下水向洞內(nèi)滲流,滲流場發(fā)生較大變化,隧洞周圍產(chǎn)生明顯的漏斗狀的低孔隙水壓力分布區(qū)。隧洞開挖后隧洞周邊滲流速度和水力坡降比較大,不利于圍巖的穩(wěn)定。在隧洞周圍注漿之后,隧洞周邊孔隙水壓力得到明顯的回升,滲流速度大大減小,注漿效果十分明顯。(2)隧洞開挖引起巖體明顯的卸荷作用,在隧洞周圍引起不同程度的低應(yīng)力區(qū),其中在拱頂和拱底周圍應(yīng)力降幅最大,有受拉趨勢,在椒溪河隧洞的拱頂和拱底位置產(chǎn)生了拉應(yīng)力區(qū),驗證了這一點。注漿后圍巖整體應(yīng)力得到改善,但在注漿圈與圍巖交界處易出現(xiàn)應(yīng)力集中現(xiàn)象。(3)地下水位對滲流場的影響主要表現(xiàn)在數(shù)值上,地下水位越高隧洞周邊的滲流越大,但不同地下水位滲流場的分布規(guī)律具有很大的相似性。注漿圈能很好的降低圍巖中的滲流速度,隨著注漿圈厚度的增大,圍巖滲流速度明顯降低。地下水位越高對應(yīng)力場的影響越大,注漿圈厚度越大,對于防止圍巖出現(xiàn)過大變形,維護(hù)圍巖的穩(wěn)定性越有利。(4)對椒溪河隧洞進(jìn)行了開挖數(shù)值模擬,分析了滲流場和應(yīng)力場在開挖前后的變化,得出了隧洞開挖過程中圍巖的孔隙水壓力、流速、應(yīng)力和位移隨開挖時間的變化規(guī)律。
[Abstract]:The geological conditions through which the tunnel is excavated and constructed are often quite complicated, and serious engineering accidents are likely to occur, such as sudden water gushing, surface subsidence, hole collapse, etc., resulting in casualties and equipment destruction among engineers. The delay in the construction period will bring great losses to the project construction. In tunnel construction, geological hazards are formed under various complicated hydrogeological conditions. Studying the stress field and seepage field of surrounding rock is helpful to understand the causes of geological disasters. On the basis of introducing the basic theory of seepage in fractured rock mass, the numerical simulation of hydraulic tunnel excavation is carried out by using ADINA finite element software, and the variation law of seepage field and stress field before and after tunnel excavation is analyzed. The influence of groundwater level and grouting circle on seepage field and stress field in surrounding rock of tunnel is studied. Finally, the variation of stress field and seepage field with tunnel excavation time is studied in combination with practical engineering. The main conclusions of this paper are as follows: (1) the excavation of the tunnel leads to the seepage of groundwater in the surrounding rock of the tunnel into the tunnel, the seepage field changes greatly, and there is an obvious funnel-shaped low pore water pressure distribution area around the tunnel. After tunnel excavation, the seepage velocity and hydraulic gradient around the tunnel are relatively large, which is not conducive to the stability of surrounding rock. After grouting around the tunnel, the pore water pressure around the tunnel is obviously increased, the seepage velocity is greatly reduced, and the grouting effect is very obvious. Around the tunnel, there are low stress areas to different degrees, in which the stress decrease is the largest around the arch roof and the arch bottom, and there is a tendency of tension. The tensile stress zone is produced at the arch top and arch bottom position of the tunnel in Jioxihe River, which proves this point. After grouting, the overall stress of surrounding rock is improved, but the stress concentration phenomenon is easy to appear at the junction of grouting circle and surrounding rock.) the influence of groundwater level on seepage field is mainly expressed in numerical value, the higher the groundwater level is, the greater the seepage around the tunnel is. But the distribution law of seepage field of different groundwater level is very similar. The grouting ring can reduce the seepage velocity in the surrounding rock well, and with the increase of the thickness of the grouting ring, the seepage velocity of the surrounding rock decreases obviously. The higher the groundwater level, the greater the influence of the corresponding force field, the thicker the grouting circle, the more favorable the stability of the surrounding rock is to prevent the deformation of surrounding rock, and the more favorable to maintain the stability of surrounding rock, the numerical simulation of the excavation of the Jiaoxihe tunnel is carried out. The variation of seepage field and stress field before and after excavation is analyzed, and the variation law of pore water pressure, velocity, stress and displacement of surrounding rock during tunnel excavation with excavation time is obtained.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TV554
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 應(yīng)宏偉;朱成偉;龔曉南;;考慮注漿圈作用水下隧道滲流場解析解[J];浙江大學(xué)學(xué)報(工學(xué)版);2016年06期
2 凌同華;高亮;李潔;;基于塊體理論的隧道圍巖穩(wěn)定性數(shù)值分析[J];中外公路;2015年06期
3 楊峰;鄭響湊;趙煉恒;石杰紅;陽軍生;;地表超載作用下隧道失穩(wěn)破壞的上限有限元分析[J];巖土力學(xué);2015年S2期
4 渠孟飛;謝強;胡熠;李朝陽;;寒區(qū)隧道襯砌凍脹力室內(nèi)模型試驗研究[J];巖石力學(xué)與工程學(xué)報;2015年09期
5 封志明;楊艷昭;游珍;;中國人口分布的水資源限制性與限制度研究[J];自然資源學(xué)報;2014年10期
6 韓凱航;張成平;王夢恕;;淺埋隧道圍巖應(yīng)力及位移的顯式解析解[J];巖土工程學(xué)報;2014年12期
7 陳必光;宋二祥;程曉輝;;二維裂隙巖體滲流傳熱的離散裂隙網(wǎng)絡(luò)模型數(shù)值計算方法[J];巖石力學(xué)與工程學(xué)報;2014年01期
8 李術(shù)才;宋曙光;李利平;張乾青;王凱;周毅;張騫;王慶瀚;;海底隧道流固耦合模型試驗系統(tǒng)的研制及應(yīng)用[J];巖石力學(xué)與工程學(xué)報;2013年05期
9 華福才;;FLAC~(3D)在青島地鐵滲流場中的應(yīng)用[J];巖土力學(xué);2013年01期
10 錢七虎;;地下工程建設(shè)安全面臨的挑戰(zhàn)與對策[J];巖石力學(xué)與工程學(xué)報;2012年10期
相關(guān)博士學(xué)位論文 前5條
1 陳亮;深埋軟巖隧道流變特征研究[D];西南交通大學(xué);2014年
2 馬宏偉;引水隧道在地震波入射時的動力響應(yīng)解析解[D];北京交通大學(xué);2013年
3 劉金云;軟弱土層輸水隧道地震響應(yīng)及減震措施研究[D];大連理工大學(xué);2007年
4 張鵬;裂隙表面幾何形態(tài)對裂隙介質(zhì)力學(xué)、水力學(xué)特性的影響規(guī)律研究[D];西安理工大學(xué);2007年
5 謝紅強;隧道工程熱液固多場耦合效應(yīng)研究[D];西南交通大學(xué);2006年
相關(guān)碩士學(xué)位論文 前8條
1 趙毅;富水裂隙巖體隧道注漿堵水對滲流場影響研究[D];石家莊鐵道大學(xué);2016年
2 艾旭峰;裂隙巖體隧道滲流場特征研究[D];石家莊鐵道大學(xué);2015年
3 張春梅;水氣兩相流在單裂隙巖體中運移規(guī)律的數(shù)值模擬研究[D];遼寧工程技術(shù)大學(xué);2011年
4 王永甫;有限元強度折減法在隧洞穩(wěn)定分析中的應(yīng)用[D];重慶交通大學(xué);2010年
5 何紅忠;海底隧道滲流場分析及施工數(shù)值模擬[D];中南大學(xué);2009年
6 徐筠;開挖應(yīng)力狀態(tài)下隧道圍巖損傷演化及漸進(jìn)破壞規(guī)律研究[D];重慶交通大學(xué);2008年
7 王剛;裂隙巖體海底隧道最小巖石覆蓋厚度研究[D];山東科技大學(xué);2005年
8 懷超;關(guān)鍵塊體理論在高速公路連拱隧道圍巖穩(wěn)定性分析中的應(yīng)用[D];長安大學(xué);2005年
,本文編號:1846241
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1846241.html