材料參數(shù)對拱壩非線性響應(yīng)的敏感性分析
發(fā)布時(shí)間:2018-03-24 18:09
本文選題:拱壩 切入點(diǎn):材料非線性 出處:《昆明理工大學(xué)》2014年碩士論文
【摘要】:通過總結(jié)國內(nèi)外學(xué)者關(guān)于拱壩非線性問題對材料敏感性分析這一課題的研究成果、主要的研究方法和發(fā)展現(xiàn)狀,選定材料非線性問題拱壩受力情況對D-P材料參數(shù)敏感性分析作為本文的研究課題。主要是對拱壩基本組合的正常蓄水位溫升溫降工況進(jìn)行彈塑性計(jì)算,并且對拱壩的Y向位移、最大拉應(yīng)力、最大壓應(yīng)力及塑性區(qū)發(fā)展進(jìn)行了敏感性分析,對實(shí)際工程具有一定的意義。 空心球體熱-結(jié)構(gòu)耦合場理論解與數(shù)值解的對比表明:相對誤差各點(diǎn)不一,但全局能量誤差泛數(shù)為0.426%,說明得到的數(shù)值解是可靠的;網(wǎng)格劃分為映射劃分六面體單元時(shí),比自由劃分結(jié)果要好;單元尺寸宜為0.25倍球體厚度。對拱壩進(jìn)行計(jì)算表明:大部分區(qū)域的計(jì)算結(jié)果誤差均很小,壩體能量誤差泛數(shù)小于11.6%。 粘聚力不變,內(nèi)摩擦角增大時(shí)分析表明:兩種工況的共性是塑性區(qū)明顯減少,最大等效塑性應(yīng)變減小,發(fā)生在上游壩底;壩體第一主應(yīng)力明顯減小,最大值發(fā)生在上游壩底;壩體Y方向最大值均發(fā)生在上游壩頂中部和下游壩底中部。不同之處是在溫升工況,第三主應(yīng)力明顯減小,最大值發(fā)生在下游右岸壩底;壩體Y方向位移略有減小,但變化不明顯;在溫降工況,第三主應(yīng)力明顯減小,最大值發(fā)生在上游右岸壩底;壩體Y方向位移明顯減小。 內(nèi)摩擦角不變,粘聚力減小時(shí)分析表明:兩種工況的共性是塑性區(qū)略有增大,最大等效塑性應(yīng)變增大,發(fā)生在上游壩底略偏左岸;壩體第一主應(yīng)力無明顯變化,最大值發(fā)生在上游壩底偏左岸。不同的是溫升工況,第三主應(yīng)力變化無明顯趨勢,最大值發(fā)生在上游左岸壩底;壩體Y方向位移變化無明顯趨勢,最大值均發(fā)生在上游壩頂中部和下游壩底中部。溫降工況,第三主應(yīng)力明顯增大,最大值發(fā)生在上游右岸壩底;壩體Y方向位移變化增大,最大值均發(fā)生在上游壩頂中部和下游壩底中部。 對比分析表明:溫升工況,下游壩底中部的Y方向位移最大值大于上游壩頂中部Y方向位移最大值;溫降工況與之相反;塑性區(qū)的范圍發(fā)生在上游壩底及左右岸的地方,最大等效塑性應(yīng)變通常出現(xiàn)在上游左岸壩底。但內(nèi)摩擦角的變化對塑性區(qū)發(fā)展、第一主應(yīng)力、壩體Y方向位移影響更敏感;粘聚力的變化對第三主應(yīng)力、壩體Y方向位移影響敏感。工程中需加以注意。
[Abstract]:By summing up the research achievements, main research methods and development status of the research on the material sensitivity analysis of the nonlinear problem of arch dam, The sensitivity analysis of D-P material parameter to the stress of arch dam with material nonlinear problem is selected as the research topic in this paper. The elastic-plastic calculation of the normal temperature and temperature drop condition of the normal storage water level and the Y direction displacement of the arch dam are carried out. The sensitivity analysis of the maximum tensile stress, the maximum compressive stress and the development of the plastic zone is of certain significance to the practical engineering. The comparison between the theoretical and numerical solutions of the thermal-structural coupling field of the hollow sphere shows that the relative error varies from point to point, but the universal number of global energy errors is 0.426, which shows that the obtained numerical solution is reliable, and the meshes are mapped to divide hexahedron elements. The element size should be 0.25 times the thickness of the sphere. The calculation of the arch dam shows that the error of the calculation results in most areas is very small, and the energy error of the dam is less than 11.6. When the cohesive force is constant and the angle of internal friction increases, it is shown that the common features of the two conditions are that the plastic zone is obviously reduced, the maximum equivalent plastic strain is reduced, which occurs at the bottom of the upstream dam, the first principal stress of the dam body decreases obviously, and the maximum value occurs at the bottom of the upstream dam. The maximum Y direction of the dam body occurs in the middle of the upstream dam top and the middle of the downstream dam bottom. The difference is that in the temperature rise condition, the third principal stress obviously decreases, the maximum occurs at the bottom of the downstream right bank dam, and the Y direction displacement of the dam body decreases slightly. Under the condition of temperature drop, the third principal stress decreases obviously, the maximum occurs at the bottom of the upstream right bank dam, and the Y direction displacement of the dam body decreases obviously. When the angle of internal friction is constant and the cohesive force is reduced, the results show that the plastic zone increases slightly and the maximum equivalent plastic strain increases, which occurs on the left bank of the bottom of the upstream dam, and the first principal stress of the dam body has no obvious change. The maximum value occurs on the left bank of the bottom of the upstream dam. The temperature rise condition is different, the change of the third principal stress has no obvious trend, the maximum value occurs at the bottom of the dam in the left bank of the upstream, and there is no obvious trend in the change of Y direction displacement of the dam body. The maximum value occurs in the middle of the upstream dam top and the middle of the downstream dam bottom. Under the condition of temperature drop, the third principal stress increases obviously, the maximum occurs at the bottom of the dam in the right bank of the upstream, and the Y direction displacement of the dam body increases. The maximum occurred in the middle of the upstream dam top and the middle of the downstream dam bottom. The comparative analysis shows that the maximum value of Y direction displacement in the middle of downstream dam bottom is greater than the maximum Y direction displacement in the middle of upstream dam top, the temperature drop condition is opposite to the temperature rise condition, and the range of plastic zone occurs at the bottom of upstream dam and on the left and right bank. The maximum equivalent plastic strain usually appears at the bottom of the upstream left bank dam, but the change of the angle of internal friction is more sensitive to the development of the plastic zone, the first principal stress and the Y direction displacement of the dam body, and the change of cohesive force is more sensitive to the third principal stress. The influence of Y direction displacement on dam body is sensitive. Attention should be paid to it in engineering.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV642.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 陳大松;關(guān)于細(xì)石混凝土砌石拱壩問題的討論[J];貴州水力發(fā)電;2003年04期
2 李慶齡;;ANSYS中網(wǎng)格劃分方法研究[J];上海電機(jī)學(xué)院學(xué)報(bào);2006年05期
3 朱伯芳;中國拱壩建設(shè)的成就[J];水力發(fā)電;1999年10期
4 朱伯芳;庫水溫度估算[J];水利學(xué)報(bào);1985年02期
5 趙代深,薄鐘禾,李廣遠(yuǎn),杜德進(jìn);混凝土拱壩應(yīng)力分析的動(dòng)態(tài)模擬方法[J];水利學(xué)報(bào);1994年08期
,本文編號(hào):1659438
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1659438.html
最近更新
教材專著