瑪河電站橋梁式渡槽結構設計方法研究
本文關鍵詞: 渡槽 有限元分析 模態(tài)分析 動力時程分析 出處:《石河子大學》2014年碩士論文 論文類型:學位論文
【摘要】:渡槽是水利工程中應用比較廣泛的建筑物,它實現(xiàn)了各個輸水體系的連接,并且可以在不方便通過渠道的溝壑、河流地區(qū)實現(xiàn)水的運輸。新疆兵團第八師瑪納斯河流域位于天山北坡經(jīng)濟開發(fā)區(qū)核心地帶,流域總面積將近兩萬平方千米,瑪納斯河流域的開發(fā)工作從上個世紀五十年代開始,先后已經(jīng)建成引水、輸水、蓄水、發(fā)電等綜合利用的水利水電工程,渡槽已成為這些工程的重要組成部分;诖吮疚膶π陆敿{斯河一級電站工程中的其中一座橋梁式渡槽設計進行不同結構形式的對比分析得出了一些有意義的結論,包括以下幾個方面: (1)對渡槽縱向結構形式進行對比,結果表明縱向選擇等彎矩雙懸臂式可以減小結構的彎矩和剪力,降低槽身的撓度,提高渡槽承載能力。 (2)采用不同設計理論對槽體進行受力分析,并建立三維有限元分析模型,對無縱橫梁渡槽和多縱梁渡槽進行對比得:渡槽在加設縱橫梁后槽體和排架的內(nèi)力變小,并且位移及應力分布更加均勻,改善了結構的受力情況。 (3)應用流固耦合分析方法—Westergaard附加質(zhì)量法考慮動水壓力對渡槽的作用,對無縱橫梁渡槽和多縱梁渡槽進行動力分析。進行模態(tài)分析提取前十階振型和頻率,并對振型和頻率進行分析,結果表明多縱梁渡槽開始出現(xiàn)扭轉(zhuǎn)振型的時間比無縱橫梁渡槽推遲,說明加設縱橫梁可以提高槽體剛度和抗震能力。改變渡槽內(nèi)水位高度,得出隨著渡槽內(nèi)水位的升高,,渡槽結構整體質(zhì)量增加,結構自振頻率降低。 (4)輸入所在場地地震波,進行渡槽橫向水平地震響應時程分析。分析不同結構形式的渡槽在地震波作用下特征點應力及位移變化情況,得出與無縱橫梁渡槽相比多縱梁渡槽位移及應力最大值明顯下降,并且波動比較慢。說明加設縱橫梁提高了渡槽的抗震能力。 總結:橋梁式渡槽既滿足輸水功能又滿足交通功能,在自重、動水壓力、車輛荷載、風荷載、地震作用的作用下對無縱橫梁渡槽和多縱梁渡槽承載能力進行對比分析,結果表明與無縱橫梁渡槽相比多縱梁渡槽節(jié)約了材料用量,改善了受力情況,提高了渡槽抗裂能力及抗震能力,所分析成果可為同類渡槽的結構設計提供參考。
[Abstract]:Aqueduct is a widely used building in water conservancy engineering. It realizes the connection of various water conveyance systems and can be used in gullies that are not convenient to pass through the channel. The Manas River Basin is located in the core of the economic development zone on the northern slope of Tianshan Mountain, with a total area of nearly 20,000 square kilometers. The development of the Manas River Basin began in -50s. Water diversion, water conveyance, water storage, electricity generation and other comprehensive utilization water conservancy and hydropower projects have been built. The aqueduct has become an important part of these projects. Based on this, this paper makes a comparative analysis of the design of one of the bridge aqueducts in the Manas River first Class Hydropower Station in Xinjiang, and draws some meaningful conclusions. These include the following:. The results show that the double cantilever with equal bending moment can reduce the bending moment and shear force of the structure, reduce the deflection of the aqueduct, and improve the carrying capacity of the aqueduct. (2) using different design theories to analyze the force of the tank body, and establishing the three-dimensional finite element analysis model, comparing the aqueduct without longitudinal and horizontal beam with that of the aqueduct with multiple longitudinal beams: the internal force of the trough and the bent frame becomes smaller after the aqueduct is installed with the longitudinal and horizontal beams. And the displacement and stress distribution is more uniform, which improves the stress of the structure. Using the fluid-solid coupling analysis method-Westergaard additional mass method to consider the effect of hydrodynamic pressure on the aqueduct, the dynamic analysis of the aqueduct without longitudinal and transverse beams and the aqueduct with multiple longitudinal beams is carried out. The modal analysis is carried out to extract the first ten modes and frequencies of the aqueduct. The vibration mode and frequency are analyzed. The results show that the time of torsional mode of multi-beam aqueduct is delayed than that of the aqueduct without longitudinal beam, which indicates that the stiffness and seismic resistance of tank can be improved by adding longitudinal and transverse beam, and the height of water level in aqueduct can be changed. It is concluded that with the increase of the water level in the aqueduct, the whole mass of the aqueduct structure increases and the natural vibration frequency of the aqueduct decreases. (4) input the seismic wave of the site and analyze the horizontal seismic response of the aqueduct in time history. The variation of stress and displacement of the aqueduct with different structure under the action of seismic wave is analyzed. It is concluded that the maximum displacement and stress of the aqueduct with multiple longitudinal beams are obviously decreased and the fluctuation is slower than that of the aqueduct without longitudinal and transverse beams, which indicates that the seismic capacity of the aqueduct is improved by adding the longitudinal and transverse beams to the aqueduct. Conclusion: bridge aqueduct meets both the function of water delivery and traffic. Under the action of deadweight, hydrodynamic pressure, vehicle load, wind load and earthquake, the load-carrying capacity of the aqueduct with no longitudinal and horizontal beams is compared with that of the aqueduct with multiple longitudinal beams, under the action of self-weight, dynamic water pressure, vehicle load, wind load and earthquake. The results show that compared with the aqueduct without longitudinal and transverse beams, the material consumption of the aqueduct is saved, the stress situation is improved, and the anti-crack and anti-seismic ability of the aqueduct is improved. The results of the analysis can provide a reference for the structural design of the aqueduct of the same kind.
【學位授予單位】:石河子大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TV672.3
【參考文獻】
相關期刊論文 前10條
1 趙瑜,陳長勝,劉憲亮,白新理;東深供水工程矩形渡槽優(yōu)化設計及受力分析[J];長江科學院院報;2002年05期
2 翟澤冰;張根廣;李靜;;大型渡槽設置隔震支座效果分析[J];長江科學院院報;2010年03期
3 徐夢華;莫海鴻;;渡槽內(nèi)流速對其結構靜力響應的影響分析[J];長江科學院院報;2011年03期
4 鄭重陽;彭輝;閆秦龍;劉帥;;改進的遺傳算法在渡槽結構優(yōu)化設計中的應用[J];長江科學院院報;2012年07期
5 彭利華,魏建國,尤紅兵,李紅梅;大型渡槽結構振動特性分析[J];河北農(nóng)業(yè)大學學報;2003年01期
6 王博,李杰;大型渡槽結構模態(tài)分析[J];地震工程與工程振動;2000年03期
7 徐建國,陳淮,王博;渡槽結構考慮流固耦合的橫向地震響應研究[J];工程力學;2004年06期
8 張多新;李玉河;宋萬增;;大型矩形水工渡槽動力分析[J];灌溉排水學報;2009年02期
9 張永亮;大型渡槽結構振動特性分析研究[J];甘肅科技;2005年01期
10 李軍秀;任建民;楊陽;劉德志;;附加質(zhì)量法在大型梁式渡槽抗震分析中的應用[J];甘肅科技;2010年19期
相關博士學位論文 前1條
1 季日臣;大型梁式矩形渡槽結構分析中若干關鍵問題研究[D];西安理工大學;2008年
本文編號:1517366
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1517366.html