納米潤(rùn)滑油添加劑的制備與摩擦學(xué)性能研究
本文選題:潤(rùn)滑油添加劑 + 納米Cu_2O。 參考:《中國(guó)礦業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著車輛發(fā)動(dòng)機(jī)及礦山裝備傳動(dòng)系統(tǒng)設(shè)計(jì)的進(jìn)步和發(fā)展,對(duì)潤(rùn)滑油的性能提出了越來(lái)越高的要求。前期所采用的礦物基潤(rùn)滑油在耐溫性、潤(rùn)滑性、抗氧化性等方面已經(jīng)很難滿足使用要求,因此提高潤(rùn)滑油的熱穩(wěn)定性、極壓抗磨等方面成為開(kāi)發(fā)潤(rùn)滑油研究的當(dāng)務(wù)之急。隨著納米技術(shù)的不斷發(fā)展和應(yīng)用,納米摩擦學(xué)領(lǐng)域也得到了深入研究。發(fā)現(xiàn)納米材料具有改善油品耐熱性,提高載荷能力、降低摩擦和磨損的效果,并且在摩擦過(guò)程中在摩擦表面形成修復(fù)膜,降低剪切力應(yīng)力,具有良好的減摩潤(rùn)滑性能,這為潤(rùn)滑油的發(fā)展注入了新的活力。納米材料作為潤(rùn)滑油添加劑特別適用于條件苛刻的潤(rùn)滑場(chǎng)合,通過(guò)降低磨損,改善潤(rùn)滑性能,很大程度上延長(zhǎng)機(jī)器、零件的使用壽命。從另一個(gè)層次上說(shuō)也節(jié)省了資金與能源,在這個(gè)能源緊張的時(shí)代,無(wú)疑是個(gè)很好的研究方向。本文通過(guò)實(shí)驗(yàn)制備氧化亞銅、還原石墨烯、銀納米顆粒以及新型納米復(fù)合材料石墨烯-銀。這些納米顆粒作為潤(rùn)滑油添加劑不僅能夠在磨損表面起到潤(rùn)滑效果,同時(shí)具有良好的“自修復(fù)”功能。首先,采用化學(xué)液相還原方法在水溶液中制備了硬脂酸包覆的Cu_2O納米顆粒。并利用XRD、TEM、FT-IR對(duì)其晶型、形貌、表面官能團(tuán)進(jìn)行表征測(cè)試。將此納米顆粒作為潤(rùn)滑油添加劑均勻地分散到液體石蠟中。其次,通過(guò)液相還原法實(shí)驗(yàn)合成新型納米復(fù)合材料石墨烯-銀。將氧化石墨烯進(jìn)行超聲分散,與帶正電的銀離子進(jìn)行物理化學(xué)吸附,然后利用還原劑葡萄糖在高溫水浴條件下進(jìn)行液相原位還原。同樣利用銀鏡反應(yīng)制備了納米單質(zhì)銀顆粒。以抗壞血酸為還原劑,制備了還原氧化石墨烯。并將制備的三種納米材料進(jìn)行油酸改性處理,加入液體石蠟中,制得均勻分散的潤(rùn)滑油。最后,將制得的幾種潤(rùn)滑油,進(jìn)行摩擦學(xué)性能的測(cè)試。采用MRS-10G杠桿式四球摩擦磨損試驗(yàn)機(jī)進(jìn)行潤(rùn)滑抗磨性能測(cè)試,采用MRS-10P四球摩擦試驗(yàn)機(jī)進(jìn)行潤(rùn)滑油極壓性能測(cè)試?疾煸诓煌奶砑觿⑤d荷、轉(zhuǎn)速等影響因素下的摩擦學(xué)性能。最終得出不同潤(rùn)滑條件下的摩擦試驗(yàn)結(jié)果。磨斑形貌利用光學(xué)顯微鏡、掃描電鏡(SEM)拍攝。并用電子能譜儀(EDS)分析表面元素。并用光電子能譜儀(XPS)進(jìn)行磨損表面化合物進(jìn)行詳細(xì)分析。通過(guò)實(shí)驗(yàn)研究表明:(1)經(jīng)過(guò)化學(xué)還原法成功制備了Cu_2O、RGO、Ag、RGO-Ag等納米顆粒,通過(guò)XRD、TEM等先進(jìn)的現(xiàn)代測(cè)試手段,對(duì)納米材料進(jìn)行詳細(xì)的分析介紹。(2)摩擦學(xué)測(cè)試結(jié)果表明,添加RGO、Ag納米顆粒后的基礎(chǔ)油會(huì)分別展現(xiàn)出良好的減磨、抗磨性能。而添加Cu_2O、RGO-Ag納米顆粒后的基礎(chǔ)油會(huì)同時(shí)展現(xiàn)出優(yōu)異的減摩與抗磨潤(rùn)滑性能。(3)對(duì)于納米顆粒作為潤(rùn)滑油添加劑的潤(rùn)滑機(jī)理進(jìn)行分析。并對(duì)磨損劃痕表面進(jìn)行SEM、XPS等現(xiàn)代分析技術(shù)檢測(cè)。其中,Cu_2O以及Ag顆粒作為無(wú)機(jī)納米粉體能夠在磨損表面形成修復(fù)膜降低磨損消耗。納米R(shí)GO-Ag復(fù)合物是由于石墨烯本身的“自潤(rùn)滑”與銀單質(zhì)的“自修復(fù)”功能相結(jié)合出現(xiàn)的“協(xié)同”效果,而產(chǎn)生了更加優(yōu)異地摩擦學(xué)性能。
[Abstract]:With the progress and development of the design of vehicle engine and mine equipment transmission system, the performance of lubricating oil is becoming more and more demanding. The mineral base lubricating oil used in the earlier period has been difficult to meet the requirements of temperature resistance, lubrication and oxidation resistance. Therefore, the thermal stability, extreme pressure and anti-wear of the oil are raised. In order to develop the research of lubricating oil, with the continuous development and application of nanotechnology, the field of nano tribology has been deeply studied. It is found that nanomaterials can improve the heat resistance of oil, improve the load capacity, reduce the effect of friction and wear, and make the repair film on the friction surface in the process of friction, and reduce the shear force. It has good antifriction lubrication performance, which inject new vitality into the development of lubricating oil. As a lubricating oil additive, nanomaterials are especially suitable for harsh conditions of lubrication. By reducing wear and improving lubrication, the life of the machines and parts is extended to a large extent. Money and energy are also saved from the other level. The source, in this era of energy shortage, is undoubtedly a good research direction. In this paper, the experimental preparation of cuprous oxide, reduction of graphene, silver nanoparticles and new nanocomposite graphene silver. These nanoparticles, as lubricating oil additives, not only can lubricate the wear surface, but also have good "self repair". First, the Cu_2O nanoparticles coated with stearic acid were prepared by chemical liquid phase reduction in aqueous solution. The crystalline, morphologies and surface functional groups were characterized by XRD, TEM and FT-IR. The nanoparticles were evenly dispersed into the liquid paraffin as a lubricant additive. Secondly, the liquid phase reduction method was used to experiment with the liquid phase reduction method. A new type of nanocomposite, graphene silver, was used to disperse graphene oxide by ultrasonic dispersion and physical and chemical adsorption with positive silver ions. Then the reductant glucose was used in the liquid phase reduction under the condition of high temperature water bath. The silver nanoparticles were prepared by the silver mirror reaction, and the ascorbic acid was used as a reducing agent. The three kinds of nanomaterials were treated with oleic acid, and they were added to the liquid paraffin to produce uniform and dispersed lubricating oil. Finally, the tribological properties of several lubricating oils were tested. The MRS-10G lever type four ball friction and wear test machine was used to test the lubrication and wear resistance, and the MRS-10P four ball was used. The friction test machine is used to test the extreme pressure performance of lubricating oil. The tribological properties of different additives, loads and rotational speeds are investigated. The results of friction test under different lubrication conditions are finally obtained. The morphology of the wear spot is taken using optical microscope, scanning electron microscope (SEM), and the analysis of surface elements with electronic energy spectrometer (EDS). The wear surface compounds were analyzed in detail by subspectrometer (XPS). Through the experimental study, the results showed that (1) Cu_2O, RGO, Ag, RGO-Ag and other nanoparticles were successfully prepared by chemical reduction. The nano materials were analyzed in detail through advanced modern testing methods such as XRD and TEM. (2) tribological test results showed that RGO, Ag nanometers were added to the Tribological test. The base oil of the particles will show good wear reduction and wear resistance respectively. While the base oil after adding Cu_2O, RGO-Ag nanoparticles will show excellent antifriction and antiwear lubrication performance. (3) the lubrication mechanism of nano particles as lubricating oil additives is analyzed. The modern analytical techniques such as SEM, XPS and so on are carried out on the scratched surface. The Cu_2O and Ag particles, as inorganic nanoparticles, can form a repair membrane on the worn surface to reduce wear consumption. The nano RGO-Ag complex is a "synergistic" effect that the "self lubrication" of graphene itself combined with the "self repair" function of silver monomer, resulting in a better tribological performance.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE624.82
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 段宏瑜;李如琰;袁兆靜;;金屬磨損自修復(fù)技術(shù)的發(fā)展及應(yīng)用[J];機(jī)械與電子;2016年09期
2 高富賡;;全球潤(rùn)滑油添加劑市場(chǎng)概述[J];精細(xì)與專用化學(xué)品;2015年04期
3 史婷婷;李濤;晉光榮;焦翼飛;;納米材料在醫(yī)藥領(lǐng)域的應(yīng)用[J];材料導(dǎo)報(bào);2014年S2期
4 聶華偉;周元康;楊綠;朱文祥;;蒙脫土/Cu復(fù)合納米的制備及其摩擦學(xué)性能研究[J];潤(rùn)滑與密封;2014年01期
5 雷蕓;陳菲菲;李容;;銀-石墨烯復(fù)合材料的原位制備及性能研究[J];硅酸鹽通報(bào);2014年01期
6 王士釗;周雪琴;劉東志;;納米TiO_2作為潤(rùn)滑油添加劑的制備及結(jié)構(gòu)表征[J];現(xiàn)代化工;2013年11期
7 柳學(xué)全;李一;霍靜;李紅云;李紅印;;納米氟硼酸鉀潤(rùn)滑油添加劑的摩擦學(xué)機(jī)理[J];粉末冶金材料科學(xué)與工程;2013年03期
8 趙南;楊娟;周亞洲;趙登祥;韓國(guó)琪;王超志;程曉農(nóng);;氫氣熱處理制備大塊導(dǎo)電石墨烯薄膜及表征[J];功能材料;2013年09期
9 王文清;;納米材料作為潤(rùn)滑油添加劑的應(yīng)用前景[J];化學(xué)工業(yè);2011年06期
10 唐暉;李芬芳;;國(guó)內(nèi)外潤(rùn)滑油添加劑現(xiàn)狀與發(fā)展趨勢(shì)[J];合成潤(rùn)滑材料;2010年04期
相關(guān)博士學(xué)位論文 前1條
1 張克金;納米/微米減磨劑的摩擦磨損特性研究[D];吉林大學(xué);2007年
相關(guān)碩士學(xué)位論文 前1條
1 呂翔;石墨烯的制備及高分子改性[D];武漢理工大學(xué);2011年
,本文編號(hào):2094819
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2094819.html