微地震監(jiān)測技術(shù)在川南頁巖氣井水力壓裂中的應(yīng)用
發(fā)布時間:2018-07-03 19:33
本文選題:微地震 + 頁巖氣 ; 參考:《成都理工大學(xué)》2015年碩士論文
【摘要】:我國頁巖氣資源十分豐富,川渝地區(qū)頁巖氣儲量位居全國首位,但相應(yīng)的勘探開發(fā)工作尚處于初級階段。頁巖氣藏常被稱為“人造氣藏”,勘探開發(fā)通常需要水平井鉆井技術(shù)和水力壓裂技術(shù)改造儲層,形成人造裂縫網(wǎng)絡(luò)才能形成工業(yè)生產(chǎn)能力。當(dāng)前川南地區(qū)頁巖氣開發(fā)多采用水平井大型多級體積壓裂,相對于傳統(tǒng)壓裂方式,其裂縫網(wǎng)絡(luò)形成更為復(fù)雜,壓裂情況更為復(fù)雜多變。常規(guī)的壓裂監(jiān)測技術(shù),例如凈壓力分析、井溫測井、放射性測試等方式因其自身技術(shù)的局限性不能完全滿足對大型水力壓裂裂縫形成過程的監(jiān)測。微地震技術(shù)作為新興的地球物理技術(shù),通過觀測水力壓裂過程中產(chǎn)生的巖石破裂聲發(fā)射現(xiàn)象來實現(xiàn)對壓裂效果和地下狀態(tài)變化的監(jiān)測。其主要通過布設(shè)在臨井或地面的檢波器排列監(jiān)測來自地下的微地震信號,獲取微地震事件的震源信息(空間分布、震級大小)等,進而評估整個裂縫網(wǎng)絡(luò)的形態(tài)特征。本文以川南地區(qū)一典型的平臺井組大型水力壓裂為例,系統(tǒng)闡述了微地震監(jiān)測基本原理及深井監(jiān)測的基本流程及方法。其主要包括:基于井況和壓裂設(shè)計參數(shù)的觀測系統(tǒng)設(shè)計與信號采集技術(shù),獲得了高品質(zhì)的微地震信號,分析了不同強度的微地震信號與背景噪音信號特征;研究應(yīng)用不同于常規(guī)地震勘探的微地震數(shù)據(jù)預(yù)處理技術(shù),偏振分析技術(shù),速度建模及校正技術(shù),非均勻介質(zhì)下震源-速度聯(lián)合反演定位技術(shù)實現(xiàn)了對微地震信號的精準(zhǔn)定位,平均定位誤差控制在15m以內(nèi);應(yīng)用微地震技術(shù)對此次大型水力壓裂進行監(jiān)測,效果良好,現(xiàn)場實時處理結(jié)果對壓裂效果給予了初步評價,并對壓裂參數(shù)調(diào)整給出了建議,有效降低了作業(yè)成本,規(guī)避了壓裂隱患;壓裂作業(yè)結(jié)束后,對監(jiān)測結(jié)果進行結(jié)合地質(zhì)、壓裂和常規(guī)地震勘探成果的綜合解釋,主要利用微地震事件的時間屬性和能量屬性,對本次大型水力壓裂作業(yè)形成的裂縫網(wǎng)絡(luò)進行了詳細描述,獲取了裂縫網(wǎng)絡(luò)幾何形態(tài)的和壓裂改造體積(SRV),為后期的油藏描述及開發(fā)工作提供了大量基礎(chǔ)資料。本文最后論述了微地震地面監(jiān)測的基本流程,并將監(jiān)測結(jié)果與井中監(jiān)測進行對比分析,驗證地面監(jiān)測方式在不具備深井監(jiān)測的條件下,可基本實現(xiàn)對裂縫網(wǎng)絡(luò)的刻畫描述。
[Abstract]:China is rich in shale gas resources and the reserves of shale gas in Sichuan and Chongqing areas rank first in China, but the corresponding exploration and development work is still in the primary stage. Shale gas reservoir is often called "artificial gas reservoir". Exploration and development usually need horizontal well drilling technology and hydraulic fracturing technology to reconstruct reservoir and form artificial fracture network to form industrial production capacity. At present, shale gas development in south Sichuan adopts large scale multistage volume fracturing of horizontal well. Compared with the traditional fracturing method, the fracture network is more complex and the fracturing situation is more complex and changeable. Conventional fracturing monitoring techniques, such as net pressure analysis, well temperature logging, radioactivity testing and so on, can not fully meet the monitoring of the formation process of large-scale hydraulic fracturing fractures due to the limitations of its own technology. As a new geophysical technique, microseismic technology can monitor the fracture effect and the change of underground state by observing the acoustic emission phenomenon of rock fracture during hydraulic fracturing. The microseismic signals from the ground are monitored by geophone arranged in the near well or the ground, and the source information (spatial distribution, magnitude) of the microseismic events are obtained, and the morphological characteristics of the whole fracture network are evaluated. Taking the large hydraulic fracturing of a typical platform well group in south Sichuan as an example, the basic principle of microseismic monitoring and the basic flow and method of deep well monitoring are expounded systematically. It mainly includes: the design of observation system and signal acquisition technology based on well conditions and fracturing design parameters, obtained high quality microseismic signals, and analyzed the characteristics of microseismic signals and background noise signals with different intensities; The micro-seismic data preprocessing technology, polarization analysis technology, velocity modeling and correction technology, and the combined source-velocity inversion positioning technology in non-uniform medium are applied to realize the accurate location of microseismic signal. The mean positioning error is controlled within 15m, the microseismic technique is used to monitor the large-scale hydraulic fracturing, the effect is good, the field real-time processing results give a preliminary evaluation of the fracturing effect, and some suggestions for adjusting the fracturing parameters are given. After fracturing operation, the monitoring results are interpreted in combination with geological, fracturing and conventional seismic exploration results, and the time and energy attributes of microseismic events are mainly used. The fracture network formed by this large-scale hydraulic fracturing operation is described in detail, and the fracture network geometry and fracturing volume (SRV) are obtained, which provides a lot of basic data for the later reservoir description and development work. In the end, the paper discusses the basic flow of micro-seismic ground monitoring, compares the monitoring results with in-well monitoring, and verifies that the surface monitoring method can basically describe fracture network without the condition of deep well monitoring.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE377;P631.4
【參考文獻】
相關(guān)期刊論文 前1條
1 劉光鼎;論地球科學(xué)[J];地學(xué)前緣;1998年01期
相關(guān)碩士學(xué)位論文 前1條
1 劉軍;基于射線追蹤的微地震模型多波場正演模擬[D];中國石油大學(xué);2009年
,本文編號:2094765
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2094765.html
最近更新
教材專著