基于非線性滲流的水驅(qū)稠油油藏?cái)?shù)值模擬技術(shù)研究
本文關(guān)鍵詞: 稠油 非線性滲流 數(shù)值模擬 軟件 出處:《長江大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,隨著我國經(jīng)濟(jì)快速發(fā)展以及人們物質(zhì)生活水平的提高,人們對石油和天然氣的需求與日俱增,但現(xiàn)在我國常規(guī)原油的開發(fā)已進(jìn)入中后期,原油產(chǎn)量逐日遞減已遠(yuǎn)遠(yuǎn)不能滿足人們消費(fèi)需求。2013年9月,我國成為全球最大的石油消費(fèi)國,日均進(jìn)口石油達(dá)到630萬噸,超過了美國的624萬噸日均石油進(jìn)口水平。美國能源信息署(EIA)預(yù)測這一形勢將會持續(xù),并且雙方之間的日均石油進(jìn)口差距還會進(jìn)一步擴(kuò)大。為了緩解這種局勢,減少我國石油對外依賴度,對于非常規(guī)油氣藏的勘探與開發(fā)也就顯得越來越重要。其中稠油以其巨大的儲量優(yōu)勢對改善我國能源結(jié)構(gòu)、緩解石油供需壓力具有重大現(xiàn)實(shí)意義。與常規(guī)油藏不同的是稠油富含膠質(zhì)、瀝青質(zhì)、蠟等高分子聚合物使得其粘度高、流動性能差,流變性有別于一般牛頓流體,呈現(xiàn)非牛頓滲流特性,這些因素都使得稠油的開采難于常規(guī)原油。油藏?cái)?shù)值模擬技術(shù)作為油藏開發(fā)的有效輔助工具,可以為更好地開發(fā)稠油油藏提供一定的技術(shù)支持。油藏?cái)?shù)值模擬是用數(shù)值方法求解描述油氣水運(yùn)動的數(shù)學(xué)模型來研究油氣水在油氣藏中的運(yùn)動規(guī)律,是新油氣田開發(fā)方案設(shè)計(jì)、老油氣田開發(fā)方案調(diào)整與提高采收率方法選擇與方案設(shè)計(jì)的一種有力手段,為提高采收率和經(jīng)濟(jì)效益服務(wù)。但是目前常用的商業(yè)化油藏?cái)?shù)值模擬軟件大都基于達(dá)西滲流規(guī)律而建立,若是利用這些軟件對存在著非線性滲流的稠油油藏進(jìn)行模擬,得到的結(jié)果難免會出現(xiàn)較大偏差,預(yù)測的生產(chǎn)指標(biāo)也會與生產(chǎn)實(shí)際相去甚遠(yuǎn)。為了提高預(yù)測準(zhǔn)確度,更好地開發(fā)稠油油藏,迫切需要研制一套能夠?qū)Τ碛陀筒剡M(jìn)行準(zhǔn)確模擬的油藏?cái)?shù)值模擬軟件。本文通過實(shí)驗(yàn)對稠油流變性以及非線性滲流規(guī)律進(jìn)行研究,在黑油模型的基礎(chǔ)上建立了閃蒸黑油模型,分析稠油非線性滲流與達(dá)西滲流方程之間的差別,引入視粘度概念,通過流動修正系數(shù)將稠油非線性模塊嵌入到閃蒸黑油模型中,研制出稠油油藏非線性滲流數(shù)值模擬軟件,該軟件考慮了稠油非線性滲流的影響,彌補(bǔ)了常規(guī)油藏?cái)?shù)值模擬軟件不能體現(xiàn)稠油非線性滲流的不足,通過了可靠性檢驗(yàn),并利用該軟件對實(shí)際油藏進(jìn)行模擬,得到了較為理想的結(jié)果。本文完成的主要工作有:(1)稠油流變性實(shí)驗(yàn):秦皇島32-6油田與綏中36-1油田稠油剪切應(yīng)力和剪切速率之間不再是簡單線性關(guān)系,而是呈現(xiàn)出明顯的非線性關(guān)系,具有非牛頓流體的流變特性;溫度對稠油流變曲線的影響較大,相同的剪切速率下,溫度越高,對應(yīng)的剪切應(yīng)力越低;當(dāng)剪切速率為40/s時(shí),秦皇島32-6油田稠油在25℃C時(shí)的剪切應(yīng)力是70℃C時(shí)的4倍還多,對于綏中36-1油田,當(dāng)剪切速率為40/s時(shí),其25℃C時(shí)的剪切應(yīng)力與70℃C時(shí)的比值約為3;等溫,等剪切速率下,秦皇島32-6油田稠油剪切應(yīng)力要高于綏中36-1油田稠油,說明秦皇島32-6油田稠油粘度要高于綏中36-1油田;稠油粘度變化在不同的剪切速率范圍內(nèi)表現(xiàn)不同,在剪切速率比較低的情況下,稠油粘度隨剪切速率的增加減小速率較快,但在相對較高的剪切速率下,稠油粘度隨剪切速率的增加減小速率變慢;溫度是影響稠油粘度的重要因素,對稠油粘度的影響較大,相同的剪切速率下,不同溫度條件下對應(yīng)的稠油粘度相差較大。(2)稠油非線性滲流規(guī)律:在原油粘度相同的條件下,稠油啟動壓力梯度隨著滲透率的增加而減;在滲透率相同的條件下,稠油啟動壓力梯度隨著原油粘度的增加而增加;稠油啟動壓力梯度與流度具有一定的乘冪關(guān)系,啟動壓力梯度隨流度的增加而減小;滲透率與粘度是影響稠油啟動壓力梯度的主因,利用流度來表征啟動壓力梯度則是綜合了這兩個(gè)因素。(3)閃蒸黑油模型:參考黑油模型的設(shè)計(jì)以及實(shí)現(xiàn)的基礎(chǔ)上,建立閃蒸黑油模型,內(nèi)容包括:①建立數(shù)學(xué)模型,包括數(shù)學(xué)模型的假設(shè)條件、運(yùn)動方程、微分方程、輔助方程和定解條件;②建立數(shù)值模型,包括數(shù)值求解方法、差分方程、油氣組分平衡方程;③參數(shù)的取值以及處理,包括滲透率的取值以及井產(chǎn)量處理;④最后給出閃蒸黑油模型求解過程。(4)稠油油藏非線性滲流模塊:對比稠油非線性滲流與達(dá)西滲流方程之間差別,引入視粘度概念,通過流動修正系數(shù)將稠油非線性模塊嵌入到閃蒸黑油模型中,使稠油非線性滲流能夠在模型中得以實(shí)現(xiàn)。(5)稠油油藏非線性滲流數(shù)值模擬軟件:編制稠油油藏非線性滲流數(shù)值模擬軟件,對其可靠性進(jìn)行檢驗(yàn),檢驗(yàn)內(nèi)容包括零平衡、對稱性檢驗(yàn)以及與成熟商用模擬軟件計(jì)算結(jié)果進(jìn)行對比,檢驗(yàn)結(jié)果表明稠油油藏非線性滲流數(shù)值模擬軟件完全能夠用于油藏?cái)?shù)值模擬計(jì)算。(6)稠油油藏非線性滲流數(shù)值模擬軟件應(yīng)用:利用軟件對實(shí)際稠油油藏進(jìn)行模擬,模擬結(jié)果表明啟動壓力梯度越大,日產(chǎn)油量越少,含水率上升越快,原油采出程度越低;為改善稠油油藏開發(fā)效果,可采用熱采方式對稠油油藏進(jìn)行開發(fā),提高地層溫度,降低地層原油粘度,增加流度,減小啟動壓力梯度,最大限度地降低啟動壓力梯度對生產(chǎn)的影響。
[Abstract]:In recent years, with China's rapid economic development and the improvement of people's living standards, people's demand for oil and natural gas development in China now grow with each passing day, but conventional crude oil has entered the stage, diminishing daily crude oil production has been far can not meet the consumer demand for people to.2013 in September, China has become the world's largest consumer of oil daily, oil imports reached 6 million 300 thousand tons, 6 million 240 thousand tons more than the U.S. average daily oil imports. The U.S. Energy Information Administration (EIA) to predict the situation will continue, and between the two sides of the average daily oil imports will further expand the gap. In order to alleviate this situation, reduce our dependence on foreign oil, more important for unconventional the exploration and development of oil and gas reservoir is more and more. The heavy oil of its huge reserves advantages to improve China's energy structure, ease the pressure of oil supply and demand are important now Real meaning. Different from the conventional heavy oil reservoir is rich in colloid, asphaltene, wax and other polymers due to its high viscosity and poor flow properties, rheological property is different from the general Newton fluid, present seepage characteristics of non Newton, these factors make the exploitation of heavy oil to conventional raw oil. Simulation technology as an effective auxiliary tool for reservoir development the reservoir can provide technical support for the better development of heavy oil reservoir. The reservoir numerical simulation is to study the motion law of oil and gas and water in reservoir by using numerical method for solving the mathematical model describing the oil gas water movement, is the new oil and gas field development project design, adjustment and development plan of old oil and gas recovery a powerful tool design method and scheme of rate, improving the recovery efficiency and economic benefit. But the present numerical simulation software commonly used in commercial reservoir are mainly based on the Darcy seepage The law established, if the existence of heavy oil reservoir of nonlinear flow was simulated by the software, the result will inevitably appear larger deviation, the production index prediction will also with the actual production far. In order to improve the prediction accuracy, the better development of heavy oil reservoir, the urgent need to develop a simulation software of numerical reservoir accurately simulation of heavy oil reservoirs. The experimental research on crude oil rheology and nonlinear seepage law, on the basis of the black oil model flash black oil model, nonlinear analysis between heavy oil seepage and Darcy flow equation difference, the apparent viscosity of heavy oil will be introduced the concept of nonlinear module embedded into the flash flow through the black oil model the correction coefficient, developed numerical simulation software of nonlinear seepage flow of heavy oil reservoir, the software considering the effect of nonlinear seepage for heavy oil. Lack of numerical simulation software can not reflect the conventional nonlinear percolation of heavy oil reservoir, through the reliability test, and the actual reservoir is simulated by the software, and an ideal result is obtained. The main works are as follows: (1) 32-6 heavy oil rheology experiment: Qinhuangdao oilfield and Suizhong oilfield 36-1 between shear stress and shear the rate is no longer a simple linear relationship, but showing obvious nonlinear relationship, with rheological properties of non Newtonian fluid; effect of temperature on the rheological curve of the larger, the same shear rate, the higher the temperature is, the shear stress is low; when the shear rate is 40/s, 32-6 of Qinhuangdao Oilfield in 25 C C when the shear stress is 4 times more than 70 DEG C, for the 36-1 Suizhong oil field, when the shear rate is 40/s, the ratio of shear stress at 25 DEG C and 70 DEG C when the C is about 3; isothermal, Such as shear rate, shear stress in Qinhuangdao oilfield 32-6 to 36-1 higher than Suizhong oilfield, Qinhuangdao oilfield 32-6 heavy oil viscosity is higher than Suizhong 36-1 oilfield; performance in different ranges of shear rates viscosity in different shear rate is relatively low, in the case of heavy oil viscosity with the increase of the shear rate decreases in a faster rate however, at relatively high shear rates, the viscosity decreases with the increase of the shear rate slows down; temperature is an important factor affecting the viscosity, influence on the viscosity of heavy oil is larger, the same shear rate, the viscosity of heavy oil under different temperature conditions corresponding to large difference. (2): in the nonlinear seepage law of heavy oil under the same conditions the viscosity of crude oil, heavy oil starting pressure gradient decreases with the increase in permeability; permeability under the same conditions, the starting pressure gradient along with the original heavy oil Increase of oil viscosity increases; heavy oil starting pressure gradient and flow has a certain power relationship, the starting pressure gradient decreases with the increase of permeability and fluidity; heavy oil viscosity is the main reason to start pressure gradient, the flow to the starting pressure gradient is a comprehensive characterization of these two factors. (3) flash black oil model reference: black oil model design and implementation, the establishment of flash black oil model, including: the establishment of mathematical model, assumptions, including the mathematical model of motion equations, differential equations, auxiliary equations and boundary conditions; the establishment of numerical model, including numerical method, differential equation, oil and Gas Group balance equation; the value of the parameters and processing, including permeability values and well production processing; finally, the solution of flash black oil model. (4) the line of non oil reservoir seepage module: The difference between the comparison of nonlinear percolation of heavy oil with Darcy flow equation, introducing the concept of apparent viscosity, the heavy nonlinear module embedded into the flash black oil model through the flow coefficient, the nonlinear percolation of heavy oil can be realized in the model. (5) the nonlinear seepage flow of heavy oil reservoir numerical simulation software, a numerical simulation software of nonlinear seepage flow of heavy oil reservoir developed. To test its reliability test, including zero balance, symmetry test and commercial simulation software by comparing the calculation results, the test results show that the nonlinear seepage flow of heavy oil reservoir numerical simulation software can be used in oil reservoir numerical simulation computing. (6) using numerical simulation of nonlinear seepage flow of heavy oil reservoir of heavy oil reservoir were simulated using the actual the software, the simulation results show that the higher the starting pressure gradient, Nissan oil content is less, water cut rises faster, crude oil In order to improve the development effect of heavy oil reservoirs, the thermal recovery method can be used to develop heavy oil reservoirs, improve the formation temperature, reduce the viscosity of the crude oil, increase the mobility, reduce the starting pressure gradient, and minimize the influence of start-up pressure gradient on production.
【學(xué)位授予單位】:長江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE357.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 師俊峰;吳曉東;竺彪;李麗;;稠油油藏優(yōu)先開發(fā)排序方法[J];石油鉆探技術(shù);2007年01期
2 黃青華;;淺談稠油油藏的開發(fā)技術(shù)[J];科技創(chuàng)新導(dǎo)報(bào);2008年22期
3 李廣梅;馬德芝;黃曉;吳愛新;;稠油油藏工程方案后評價(jià)工作研究[J];石油天然氣學(xué)報(bào);2009年04期
4 王英斌;董晶晶;楊洪;劉強(qiáng);;稠油油藏開發(fā)技術(shù)對策分析[J];內(nèi)蒙古石油化工;2011年04期
5 李利華;;草古1單元稠油油藏過程精細(xì)管理模式[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2012年S1期
6 王靈奎,李群德,杜海鵬,鐘祖蘭,柴利文;非均質(zhì)稠油油藏油水賦存狀態(tài)研究[J];測井技術(shù);2000年02期
7 К.Г.Щербина,Е.Ф.Зубков,韓偉,孫梅蓮;用于處理難采儲層和稠油油藏的高能技術(shù)[J];國外油田工程;2000年11期
8 ;稠油油藏?cái)?shù)值模擬[J];新疆石油科技;2000年02期
9 李鳳華,王靜,祁凱,李秀孌;氣水交替驅(qū)技術(shù)在稠油油藏中的應(yīng)用[J];石油勘探與開發(fā);2001年06期
10 王俐,李紅昌,王炬,單啟成,徐進(jìn)鴻;稠油油藏開發(fā)經(jīng)濟(jì)評價(jià)及風(fēng)險(xiǎn)分析系統(tǒng)的開發(fā)[J];特種油氣藏;2002年04期
相關(guān)會議論文 前10條
1 王同濤;閆相禎;楊秀娟;;水驅(qū)稠油油藏轉(zhuǎn)注汽開采試驗(yàn)與數(shù)值模擬研究[A];全國MTS巖土混凝土試驗(yàn)研討會論文集[C];2009年
2 劉建青;;棗園油田自19-14斷塊稠油油藏吞吐式開發(fā)的初步認(rèn)識[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對策(下冊)[C];2002年
3 唐紅菊;;中-低滲透砂巖稠油油藏開發(fā)實(shí)踐與認(rèn)識[A];江漢油田難采儲量開發(fā)技術(shù)研討會論文集(二)[C];2007年
4 陳景軍;李穎;宋保菊;;陳25塊薄層稠油油藏化學(xué)驅(qū)研究與應(yīng)用[A];勝利油田北區(qū)堵水調(diào)剖技術(shù)研討會論文匯編[C];2012年
5 閆相禎;王同濤;楊秀娟;;水驅(qū)稠油油藏轉(zhuǎn)注汽開采試驗(yàn)與數(shù)值模擬研究[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
6 ;稠油油藏滲流機(jī)理研究及軟件開發(fā)[A];力學(xué)與西部開發(fā)會議論文集[C];2001年
7 李迎春;邱國清;李偉忠;王占國;;王莊油田鄭408塊敏感性稠油油藏火燒驅(qū)油油藏工程研究[A];稠油、超稠油開發(fā)技術(shù)研討會論文匯編[C];2005年
8 周思宏;;海上疏松砂巖稠油油藏采油工藝配套技術(shù)[A];渤海灣油氣勘探開發(fā)工程技術(shù)論文集(第十集)[C];2005年
9 宮厚健;周廣卿;徐龍;張青茹;董明哲;李亞軍;;有機(jī)堿復(fù)合驅(qū)提高稠油油藏采收率研究[A];中國化學(xué)會第十四屆膠體與界面化學(xué)會議論文摘要集-第6分會:膠體與界面化學(xué)技術(shù)、應(yīng)用與產(chǎn)品[C];2013年
10 宋道萬;王占國;徐丕東;李迎春;;鄭408塊敏感性稠油油藏火燒驅(qū)油數(shù)值模擬研究[A];稠油、超稠油開發(fā)技術(shù)研討會論文匯編[C];2005年
相關(guān)重要報(bào)紙文章 前10條
1 熊聰茹 王春燕;我國最大整裝稠油油藏首次實(shí)現(xiàn)長距離管輸[N];中國能源報(bào);2012年
2 林毅 李偉忠;王莊水敏感性稠油油藏實(shí)現(xiàn)“脫敏”[N];中國石化報(bào);2007年
3 特約記者 林勇;勝利油田中深低滲稠油油藏試油技術(shù)國際領(lǐng)先[N];東營日報(bào);2012年
4 記者 鄭干臣 通訊員 尤軍偉;用新技術(shù)叩開稠油油藏大門[N];中國石化報(bào);2000年
5 姚劍;勝利億噸級稠油油藏漸被喚醒[N];中國石化報(bào);2005年
6 特約記者 王振江 馬立玫 盛玉奎;華北采油五廠稠油油藏實(shí)現(xiàn)規(guī);_采[N];中國石油報(bào);2006年
7 任厚毅;用火箭動力設(shè)備“鉆地”采油[N];中國石化報(bào);2013年
8 本報(bào)記者 趙士振邋通訊員 曲波;王莊敏感性稠油油藏實(shí)現(xiàn)工業(yè)化開采[N];中國石化報(bào);2008年
9 王金法;荀旭;敏感性稠油油藏不再沉睡[N];中國石化報(bào);2003年
10 馬莉 李斌;勝利油田破解熱采稠油油藏堵水難題[N];中國能源報(bào);2014年
相關(guān)博士學(xué)位論文 前7條
1 李金發(fā);稠油油藏多輪次吞吐后期改善開發(fā)效果技術(shù)研究[D];中國石油大學(xué);2007年
2 霍進(jìn);水驅(qū)后轉(zhuǎn)注蒸汽開發(fā)稠油油藏精細(xì)油藏描述與數(shù)值模擬研究[D];西南石油學(xué)院;2004年
3 薛宗占;深層塊狀稠油油藏轉(zhuǎn)重力火驅(qū)研究[D];中國地質(zhì)大學(xué)(北京);2013年
4 周玉輝;準(zhǔn)噶爾盆地稠油油藏CO_2驅(qū)提高采收率及埋存技術(shù)可行性研究[D];西南石油大學(xué);2014年
5 秦國偉;非均質(zhì)稠油油藏復(fù)合調(diào)驅(qū)技術(shù)實(shí)驗(yàn)研究[D];中國石油大學(xué);2010年
6 王紅濤;稠油油藏注蒸汽儲層物性參數(shù)變化規(guī)律及治理技術(shù)研究[D];中國地質(zhì)大學(xué)(北京);2009年
7 蔣平;稠油油藏表面活性劑驅(qū)油機(jī)理研究[D];中國石油大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李昊;裂縫性稠油油藏蒸汽吞吐合理技術(shù)政策研究[D];中國地質(zhì)大學(xué)(北京);2015年
2 辛顯康;基于非線性滲流的水驅(qū)稠油油藏?cái)?shù)值模擬技術(shù)研究[D];長江大學(xué);2015年
3 劉曉陽;稠油油藏開發(fā)技術(shù)研究[D];大慶石油學(xué)院;2008年
4 鄒魯新;紅淺一井區(qū)侏羅系稠油油藏油藏精細(xì)描述研究[D];西南石油學(xué)院;2005年
5 鄭國發(fā);勝坨油田坨7塊東一段稠油油藏綜合開發(fā)調(diào)整研究[D];中國石油大學(xué);2011年
6 孫樹強(qiáng);薄層稠油油藏開采技術(shù)研究[D];中國石油大學(xué);2007年
7 王楠;稠油油藏整體壓裂技術(shù)研究[D];西南石油大學(xué);2014年
8 張萍;陳家莊南區(qū)稠油油藏開采工藝技術(shù)應(yīng)用研究[D];中國石油大學(xué);2007年
9 劉明君;稠油油藏機(jī)采井井筒溫度場分布研究[D];大慶石油學(xué)院;2008年
10 魏東蘭;高424塊稠油油藏開發(fā)方式研究[D];中國石油大學(xué);2010年
,本文編號:1551713
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1551713.html