A Fast and Accurate Biometric Identification System Based on
發(fā)布時間:2024-04-13 23:17
自動化技術和物聯(lián)網(wǎng)的進步徹底改變了智能城市的概念。雖然自動化技術的不管進步使市民的生活更加方便,但它也帶來了重大的安全威脅。為了應對日益嚴重的電子商務欺詐和身份盜用問題,急需一個高度安全的自動識別系統(tǒng)。盡管傳統(tǒng)的生物識別系統(tǒng)提供了中等水平的安全性,但它們都受到生理變化的影響并且易于偽造。因此,生物識別系統(tǒng)的重要特性:持久性,難以在這些傳統(tǒng)生物識別系統(tǒng)中得以保障。我們利用多樣本數(shù)據(jù)集開發(fā)了一種基于視網(wǎng)膜血管網(wǎng)絡的高性能快速準確的生物識別系統(tǒng)。視網(wǎng)膜血管網(wǎng)絡的分布模式在所有個體中都是獨特的。甚至這個模式也在同一個人的兩只眼中也不相同。為了實現(xiàn)高識別精度,我們改進了現(xiàn)有的使用單個分割方法的技術,提出了一種新的混合分割方法。該混合分割方法使用不同的分割技術來處理不同的視網(wǎng)膜血管的寬度。粗血管和細血管使用獨立的處理方法,因此解決了如果使用同一方法就必須在粗細血管分割精度之間妥協(xié)的問題。因此,當兩個分割結果都被保留時,分割精度得到改善。由于所提出的方法依賴于視網(wǎng)膜血管系統(tǒng),因此改進的分割最終提高了所提出方法的識別準確性。通過使用端點,分叉和交叉的組合,進一步提高了識別精度。我們提出的特征集提供了最...
【文章頁數(shù)】:84 頁
【學位級別】:碩士
【文章目錄】:
摘要
abstract
1 Introduction
1.1 Background
1.1.1 Objectives
1.2 Related Work
1.2.1 Segmentation of Retinal Vasculature Network
1.2.2 Identification Based on Retinal Vasculature Network
1.3 Contributions
1.4 Contents of This Thesis
2 System Framework and Approach Overview
2.1 Approach Overview
2.2 Graphical User Interface
3 Enrollment Module
3.1 Retinal Vasculature Segmentation
3.1.1 Pre-Processing
3.2 Segmentation
3.2.1 Hybrid Segmentation
3.3 Fusion
3.4 Post-Processing
3.5 Feature Extraction
3.5.1 Crossing Number Technique
3.5.2 Color Slicing
3.6 Template Generation
3.6.1 Template Formulation
3.6.2 Dimensionality Reduction
3.7 Experimental Evaluation
3.7.1 Data sets and Evaluation Parameters
3.7.2 Statistical Evaluation of Hybrid Segmentation Approach
3.7.3 Visual Evaluation of Hybrid Segmentation Approach
3.8 Conclusion
4 Identification Module
4.1 Matching
4.2 Experimental Evaluation
4.2.1 Retinal Identification
4.2.2 Computational Time Efficiency
4.2.3 Comparison of Features Discriminant Power
4.2.4 Impact of Scaling on System Performance
4.3 Conclusion
5 Conclusion and Future Prospects
5.1 Summary
5.2 Future Prospects
Acknowledgements
Publications
Bibliography
本文編號:3953769
【文章頁數(shù)】:84 頁
【學位級別】:碩士
【文章目錄】:
摘要
abstract
1 Introduction
1.1 Background
1.1.1 Objectives
1.2 Related Work
1.2.1 Segmentation of Retinal Vasculature Network
1.2.2 Identification Based on Retinal Vasculature Network
1.3 Contributions
1.4 Contents of This Thesis
2 System Framework and Approach Overview
2.1 Approach Overview
2.2 Graphical User Interface
3 Enrollment Module
3.1 Retinal Vasculature Segmentation
3.1.1 Pre-Processing
3.2 Segmentation
3.2.1 Hybrid Segmentation
3.3 Fusion
3.4 Post-Processing
3.5 Feature Extraction
3.5.1 Crossing Number Technique
3.5.2 Color Slicing
3.6 Template Generation
3.6.1 Template Formulation
3.6.2 Dimensionality Reduction
3.7 Experimental Evaluation
3.7.1 Data sets and Evaluation Parameters
3.7.2 Statistical Evaluation of Hybrid Segmentation Approach
3.7.3 Visual Evaluation of Hybrid Segmentation Approach
3.8 Conclusion
4 Identification Module
4.1 Matching
4.2 Experimental Evaluation
4.2.1 Retinal Identification
4.2.2 Computational Time Efficiency
4.2.3 Comparison of Features Discriminant Power
4.2.4 Impact of Scaling on System Performance
4.3 Conclusion
5 Conclusion and Future Prospects
5.1 Summary
5.2 Future Prospects
Acknowledgements
Publications
Bibliography
本文編號:3953769
本文鏈接:http://sikaile.net/kejilunwen/shengwushengchang/3953769.html
最近更新
教材專著